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Abstract: We present a low-cost prototype of a visible and near-infrared (VIS-NIR) remote
sensing platform, optimized to detect and characterize natural flaming fire fronts from
airborne nighttime light (NTL) observations, and its radiometric calibration. It uses com-
mercially available CMOS sensor cameras and filters with roughly 100 nm bandwidths to
effectively discriminate burning biomass from other sources of NTL, a critical ability for
wildfire monitoring near populated areas. Our filter choice takes advantage of the strong
potassium line emission near 770 nm present in natural flaming. The calibrated cameras
operate at 20 ms of exposure time and boast radiance measurements with a sensitivity floor,
depending on the filter, in the range 3–5 × 10−6 W m−2 sr−1 nm−1 with uncertainties lower
than 5% and dynamic ranges near 3000–4000. An additional exposure time with a tenth of
the duration is calibrated and extends the dynamic range by a factor of 10. We show images
of a spatially resolved fire front from an airborne observation of flaming biomass within this
radiance range.

Keywords: radiometric calibration; fire detection; wildfire; nighttime fire activity; flaming;
nighttime lights; multiband imaging; aircraft remote sensing

1. Introduction
Wildfires can be both costly and deadly when they become out of control near popu-

lated areas. Even when wildfires do not threaten human life, they generate large quantities
of particulate matter and greenhouse gases, both of which have far-reaching effects on
Earth’s atmosphere and public health once released [1]. As such, it is critical to locate wild-
fires as they begin, estimate their severity, and monitor their time evolution. Autonomous
and semi-autonomous remote sensing provides a way of monitoring large swaths of Earth’s
surface for fire activity [2].

There are several ways that a fire can be remotely sensed. Typical observation strate-
gies include short-wave infrared (SWIR) and mid-wave infrared (MWIR) sensors, operating
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at wavelengths of λ = 0.9–2.5 µm and λ = 3–5 µm, respectively. Techniques to mea-
sure fire radiative power (FRP) using infrared imagers also have a proven track record
(e.g., [2,3]). Beyond that, imagers that operate at longer wavelengths in the thermal infrared
are also used. Each of these bands are advantageous because fires tend to exhibit high
radiance in the infrared, and the atmosphere and fire smoke are mostly transparent at long
wavelengths. MWIR tends to be the band of choice, because contamination from sunlight
is stronger in the SWIR. Infrared sensors, unfortunately, tend to suffer from high cost and
are sensitive to their operating temperature. Infrared photons have lower energy than their
visible counterparts, so high-resolution IR imaging semiconductor devices must have small
enough bandgaps to be sensitive to these low-energy photons. These sensors generally
require a robust cooling solution to reduce contamination from thermal electrons entering
the sensor’s conduction band.

The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments operating aboard
Suomi-NPP and the NOAA-20 satellites offer fire detection from space using multispectral
observations with a ground resolution of 375 m [4]. Recent VIIRS algorithm improvements,
specifically with the Fire Light Detection Algorithm (FILDA-2), have increased the qual-
ity of VIIRS fire data products, including measurements of the visible emission fraction
(VEF) [5]. The technique uses radiance measurements from VIIRS’s day/night band (DNB),
operating in the visible and near-infrared (VIS-NIR), and radiances measured by the M13
band, operating in the MWIR. VEF, the ratio of visible light radiance emitted to infrared
light radiance, may be a better indication of fire propagation direction than the fire radiative
power alone [5]. For example, space-based FRP measurements lack the spatial resolution to
discriminate between a pixel dominated by a large area of smoldering, or by a small area of
active flaming—which might have equal estimates of FRP. The small area of active flaming,
however, is much more likely to propagate the fire front, since a fire front occurs at the
boundary between burned and unburned fuel.

The VEF has also been found to be related to the fires’ modified combustion efficiency
(MCE) [5,6]. The MCE of wildfires, the mass ratio of carbon emitted as CO2 to the total
carbon emitted as both carbon dioxide and carbon monoxide, is intimately related to
the diversity and quantity of other chemical species released by burning biomass. Very
efficient combustion of burning biomass releases mostly carbon dioxide, water, and heat.
Emission of other fire byproducts, like gaseous oxides of nitrogen and sulfur, volatile, semi-
volatile, and non-volatile organic compounds, as well as aerosolized particulate matter are
minimized when combustion efficiency is high. Conversely, when combustion is inefficient,
large quantities of the other fire byproducts are released [7]. These pollutants have far-
reaching effects on human health [7,8] and the atmosphere [9]. Burning biomass aerosols
and chemical species are also each important inputs to climate forecasting models [10].
Measuring a fire event’s combustion efficiency is critical to forecast the overall impact of a
fire event. With that in mind, we are constructing a remote sensing platform optimized to
measure the VEF, and therefore the modified combustion efficiency, of burning biomass.
Given that proven techniques exist to measure FRP in the MWIR, this paper is dedicated to
the prototyping of the VIS-NIR half of the array of sensors required to measure the VEF.

Operating in the VIS-NIR allows us to use silicon-based semiconductor cameras. High-
resolution, commercialized complementary metal–oxide–semiconductor (CMOS) sensors
are relatively insensitive to operating temperature and are inexpensive. While they lack
sensitivity deeper into the infrared spectrum, they are sensitive in the VIS-NIR. Burning
biomass flaming is bright in the VIS-NIR, especially due to an excited potassium line
emission near 770 nm. Natural flaming, from a fire whose fuel is plant matter, typically has
a large quantity of excited potassium since plants draw potassium from the ground and
sequester it within their biomass. Burning this biomass excites a disproportionate amount
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of potassium line emission compared to other kinds of flaming. Using an overabundant
potassium line emission from observed light sources to identify flaming was suggested by
Vodacek et al. [11] and investigated for use in daytime fire detection [12]. Vodacek et al. [11]
suggest using a K-emission index—the ratio of narrow band observations near 770 nm to a
nearby band that does not contain the potassium emission, e.g., 780 nm. Unfortunately,
near-infrared observations of excited potassium emission during the day are fraught with
background contamination. Sunlight is bright near 770 nm, and vegetation is reflective in
the near-infrared [13].

NightHawk’s observation strategy circumvents the daytime contamination problem
entirely by focusing on observing nighttime light. This is not only a matter of observation
convenience, Balch et al. [14] showed that wildfire activity at night has increased across
the globe. A platform optimized for observing nighttime wildfire activity, especially active
flaming, could prove to be a valuable tool. We investigated whether or not burning
biomass could be detected using commercially available CMOS sensors and broadband
VIS-NIR filters in a previous publication [15]. In that communication, we showed that it is
indeed possible to discriminate between burning biomass and other sources of NTL using
accessible hardware and a simple band-ratio technique. The ability to distinguish between
flaming and artificial light is crucial, as wildfires pose the greatest immediate danger when
they approach populated areas, which are typically well lit by artificial lights.

While the uncalibrated data from NightHawk proved to be useful for discriminating
between light from burning biomass and artificial nighttime light, here we conducted a
radiometric calibration of NightHawk’s VIS-NIR sensors. Radiometrically calibrating our
four VIS-NIR cameras provides sensors that can be used to detect and characterize active
flaming from burning biomass. In particular, absolutely calibrated radiance measurements
of light in the VIS-NIR are required to measure a fire’s visible emission fraction. In the
following sections, we present the NightHawk device, discuss its radiometric calibration,
and show calibrated measurements of a spatially resolved fire front.

2. NightHawk
2.1. Construction and Operation

This iteration of NightHawk was designed and built to be deployed on a Beechcraft
Bonanza aircraft. The aircraft we used has been retrofitted by our team members at the
Operator Performance Laboratory (OPL) for scientific applications. The four cameras
are arranged in a 2 × 2 pattern to fit within a 5-inch-diameter port on the bottom of the
aircraft. The cameras are connected to a powered USB hub and the hub is connected
to a computer operated by an experimenter in the aircraft. We use Allied Vision’s soft-
ware development kit (SDK) Vimba 6.0 to control the camera system run by a ruggedi-
zed computer also mounted to the aircraft. NightHawk and its computer are shown in
Figure 1. The software’s image acquisition cadence acquires one image with each camera at
20 ms of exposure time and two additional images with the red and NIR cameras at 2 ms of
exposure time.

NightHawk’s current mechanical design, shown in Figure 1, is optimized for the
platform it is deployed on. Most of the constraints on the design are based purely on
the dimensions of the aircraft’s mount and view port. The device is made primarily out
of machined aluminum plates 1/4 of an inch thick. The base plate that mounts to the
aircraft is the largest and supports the rest of the device. A separate, contiguous plate
holds the cameras and the inertial measurement unit (IMU) used to track the cameras’
position and attitude information. We chose to use a single plate to hold all sensors because
this produces the most stable optical alignment. The plate holding all of these sensors
is separated from the base plate by nylon screws and standoffs long enough to keep the
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front of the camera lenses close to flush with the bottom of the aircraft. The lenses are
safety-wired compliant with Federal Aviation Administration standards to prevent them
from becoming loose during operation. A cover plate fills the gap between the cameras
and covers the majority of the port on the aircraft. Above the cameras is a final plate that
both protects the rear of the cameras and holds the USB hub.

Figure 1. NightHawk panels (1,2,4) and the XH410G computer panel (3) that runs it. A ruler is
included in each image for a sense of scale. Panel 1 shows each of the 4 cameras labeled by their
MidOpt filter: (a) BP735, (b) BP470, (c) BP635, and (d) BP540. The BP635 and BP540 cameras have a
second, external SP700 filter that is IR-reflecting. The camera lenses are safety-wired together using
modified step-rings and stainless-steel wire. A view from the side is shown in panel 2 that highlights
the quarter-inch machined aluminum plates and the cameras. The cover plate (e) fills the 5” diameter
port of the aircraft. The base plate (f) mounts the device to the aircraft. Stand-offs (g) separate the
base plate and the top plate (i), which protects the rear of the cameras and mounts the powered USB
hub (l) shown in panel 4. Item (h) is a side view of the Alvium cameras themselves and the camera
plate they are mounted to. Panel 3 shows the external, removable 2.5” solid-state drive bay (j) where
data are recorded and transferred to a server later. Item (k) is the computer that runs the device.

2.2. Sensors

NightHawk employs 4 monochromatic Alvium U-1800 319m cameras manufactured
by Allied Vision (Stadtroda, Germany). These cameras use IMX265 complementary metal–
oxide–semiconductor (CMOS) sensors manufactured by Sony (Tokyo, Japan). They are in a
2/3 of an inch format, with 1544 × 2064 pixels. They have reasonable quantum efficiency
in the visible and near-infrared, peaking at 65% near 529 nm, in comparison with other
sensors of similar cost. The absolute quantum efficiency of the sensor is shown in Figure 2.
The 319m cameras are also capable of recording images with 12 bits of precision. More
details of this camera configuration are available in Allied Vision’s EMVA1288 compliant
report [16].
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Figure 2. The absolute quantum efficiencies and transmissions of the various optical components
provided by their respective manufacturers. Note that the BP635 and BP540 filters exhibit out-of-
band transmission at long wavelengths, which is eliminated by pairing them with the SP700 filter.
The CMOS sensor also loses sensitivity near 1000 nm, which doubly accounts for the BP540 filter’s
extraneous infrared transmission.

The 4 cameras are outfitted with 6 filters made by Midwest Optical Systems, or MidOpt
(Palatine, IL, USA). The filter bandpasses represent the blue (BP470), green (BP540), red
(BP635), and NIR (BP735) parts of the VIS-NIR spectrum. The width of the bandpasses
can be seen in Figure 2. The green and red filters are paired with an additional infrared-
reflective SP700 filter to eliminate undesired transmission at long wavelengths. The red,
green, and blue filters were chosen to complement the NIR filter. The NIR filter was chosen
specifically because it contains a wavelength range where (1) we expect to find excited
potassium line emission to meaningfully contribute while also not extending the bandpass
further into the infrared, and (2) the IMX265 CMOS sensor is still reasonably sensitive.
By taking band ratios in the blue/green and the NIR/red, we can discriminate between
burning biomass and unnatural sources of NTL. We can also subclassify artificial lights
into different groups (fluorescent, LED, incandescent, etc.). The light source discriminatory
power of this filter suite has been demonstrated in a previous publication [15]. The burning
biomass signal in the near infrared is enhanced in the BP735 image relative to other light
sources due to the contribution of excited potassium line emission in the BP735 passband.

For lenses, we selected the LM8JCM-V model manufactured by Kowa (Nagoya, Japan).
The LM8JCM-V is ruggedized and vibration resistant, which are each critical features for
our use case. With the 2/3” format of the IMX265 sensor, these lenses offer a horizontal ×
vertical × diagonal FOV of 56.5◦× 43.9◦× 67◦ in diameter. In addition to the lenses working
well within our size, weight, and vibration constraints, Kowa also supplies a measured
quantum efficiency curve for this lens model, presented in Figure 2. The measured quantum
efficiency curve is a necessary component in calculating a theoretical spectral response of
each camera, which we compare later with measured relative spectral responses (RSRs) in
Section 3.4.

The last sensor is Movella’s Xsens MTI-G-710-2A8G4 IMU (Henderson, NV, USA). It
is mounted to the same plate as the cameras, to monitor the position, velocity, acceleration,
and pointing direction of the device in real time. These ancillary data are necessary to
georectify the images gathered by NightHawk.

2.3. Dark-Level Performance

We quantify the dark-level performance of our cameras by examining the average
behavior of 100 dark frames. We set a dark-level bias to allow statistical fluctuations in
the pixels to report digital numbers N above and below the set bias level. Without a bias,
an electronic fluctuation that would result in a negative digital number would truncate
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to N = 0, which would prevent us from sampling the expected normal distribution of
the dark-level behavior. The standard deviation divided by the average pixel value in
the averaged dark frame is about 0.35%. We can account for some of the variation in our
images by subtracting this mean dark frame from the rest of the data since we fix the bias.
This is important because in NTL observations there may be many regions in a single image
that have no illumination at all, in which case the pixels in the dark region approximate the
dark level of the whole image.

Sets of dark frames also allow us to find hot pixels , which are pixels that system-
atically report digital numbers that are unreasonably high and typically exist due to a
manufacturing fault. We conservatively set the hot-pixel threshold to be pixels that report
digital numbers greater than three standard deviations above the mean in an average dark
frame. Hot pixels found this way can then be neglected in subsequent analyses.

3. Radiometric Calibration
A radiometrically calibrated camera reports radiance instead of digital numbers. We

seek a function that links measured digital numbers to the incident radiance responsible for
producing them. Since our system has a response that is wavelength dependent, a known
radiance is insufficient. The light source must have a known spectral radiance. That is, a
light source that has a well characterized power output per emitting area per solid angle per
wavelength. The light source should be uniform (commonly referred to as flat) and large
enough to fill the sensor’s field of view. The light source intensity should be adjustable,
such that the dynamic range of the sensors can be probed. The spectral radiances at each
intensity level are then folded through the sensor response to obtain a sensed or effective
radiance. Conversions coefficients are found by performing a linear regression on effective
radiance versus digital number.

The sensor’s relative spectral response (RSR) can either be measured using a monochro-
mator or calculated. A simple calculation involves taking the product of all of the relevant
optical components’ transmission and detection efficiencies as a function of wavelength.
For NightHawk, we need the absolute spectral transmission efficiency of the camera lens
(also referred to as the lens’s quantum efficiency), the filter transmission curves, and the
absolute quantum efficiency of the camera’s silicon sensor itself. If it is to be measured, then
we require a monochromator that produces known power outputs at known wavelengths.
We then increment the monochromator wavelength to scan across the sensitive range
of the system.

Our calibration procedure is outlined in the following sections. We performed the
radiometric calibration of NightHawk at the Optical Calibration Facility (OCF) at the
Rochester Institute of Technology (RIT). We used their LabSphere (North Sutton, NH,
USA) HELIOS 20-inch-diameter integrating sphere and attached an absolutely calibrated
spectrometer, their two plasma light sources shining into the sphere, and both their Newport
(Stratford, CT, USA) 130 1/8-meter monochromator with 3.7 nm wavelength spacing and
their Optronics Labs (Orlando, FL, USA) OL750 monochromator.

3.1. Sensor Model

The digital numbers that a camera reports are proportional to the amount of light
sensed by the camera sensor. The physical quantity that produces a response from the
camera is the incident spectral radiance Lλ (in units of W m−2 sr−1 nm−1) from some
object in the camera’s field of view. Note that the sensor does not measure the incident
spectral radiance itself—the camera optics alter the incident light and the silicon sensor
has a detection efficiency dependent on wavelength. For example, a filter will truncate an
arbitrary incident spectral radiance to only the wavelengths the filter transmits. Instead,
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the instrument measures an effective radiance Leff which depends on the camera system’s
particular response to an incoming spectral radiance Lλ. The effective radiance Leff is
computed from the spectral radiance Lλ:

Leff =

∫ λmax
λmin

RSRλ · Lλdλ∫ λmax
λmin

RSRλdλ
, (1)

where RSRλ is the system’s peak-normalized relative spectral response (RSR) (e.g., [17]).
Measuring the RSR quantifies the transmission and detection efficiencies of the sensor and
optics and allows us to calculate an effective radiance from an arbitrary incident spectral
radiance. The next section provides the details of measuring each of our sensor’s RSRs.

The relationship between digital number N and effective radiance Leff is simple in the
optical regime:

Leff = G(N − D), (2)

where D, in units of ADU, is an offset associated with the dark level of the instrument and
G is the calibration coefficient (in units of ADU−1 W m−2 sr−1 nm−1). Our objective is to
determine both G and D. To accomplish this task, we need several measurements of Leff at
different light levels and their corresponding N. In order to obtain values for Leff, however,
we need measured RSRs.

3.2. Flat Fielding

It should be noted that the digital number recorded by a camera is also a function
of other things in addition to the dark level and incident radiance. Gain, exposure time,
and vignetting must, in general, be accounted for. If operational parameters like gain and
exposure time can be fixed, then performing a calibration is simplified. Variable exposure
times and gains require a more sophisticated treatment; e.g., [18,19]. The dark levels of the
cameras were measured by taking dark frames and should correspond to the intercept D in
Equation (2), unless the average dark behavior is subtracted from the calibration data. If
the dark level is subtracted, then the intercept should be consistent with zero. A vignette
filter is measured by taking flat-field images, subtracting the dark level from the mean of
the flat-field images and normalizing the result to the pixel value at the optical axis. For us,
this is the value of the pixel at the center of the circularly symmetric light pattern of the
light focused on the CMOS sensor itself.

There is some natural pixel-to-pixel variation in every image due to detection statistics.
In every image, the pixel value that should ideally be recorded may not be the one that
is actually recorded. The statistical fluctuations in the flat field impact the location of the
optical axis. In a world without statistical fluctuations, the reported digital number at
the optical axis would be the maximum digital number in the image. We find the optical
axis by fitting polynomials to the rows and columns of the image; e.g., Figure 3. Fitting
polynomials to the rows and columns of the image produces a smoothed vignette map
that is insensitive to the pixel-to-pixel variations and contaminating features that can make
the location of the optical axis ambiguous. In the smooth vignette map, the location of its
maximum, and therefore the location of the optical axis, is unambiguous. We normalize the
mean flat-field image to its pixel value at this location to obtain a vignette filter. Subsequent
frames can then be corrected by dividing by this vignette filter (an example of this is also
shown in Figure 3).
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Figure 3. (Top left): An average flat field with its optical center, found according to the text, shown
as an ‘x’. The vertical red dashed line is a column of data shown in black in the top right plot.
(Top right): An example polynomial fit (red) to a column of data (black) in the average flat field.
Note that the location of the maximum digital count does not appear to coincide with the location
of the maximum value of the fit and that the shape appears offset. (Bottom left): A flat-field image
corrected by dividing it by the average flat field normalized to the pixel value at its optical center.
(Bottom right): Pixel values in the corrected image from the column of pixels shown as a dashed red
line in the bottom left panel. The corrected image has no remaining vignette.

3.3. CMOS Measurement Uncertainty

We examined whether or not we could assume the behavior of each pixel in the sensor
is statistically the same. If this is the case, then we can use the digital numbers recorded in
an individual flat frame as if they are sampling the statistical behavior of each individual
pixel. To examine the consistency of the pixel response to an incident radiance, we exposed
the camera to a uniform source of illuminance and acquired 100 flat frames. We corrected
the flat frames by first subtracting a mean dark frame and then, for vignetting, by dividing
by a vignette filter acquired according to the previous subsection. This dataset provides
100 samples of how each pixel responds to the same external stimulus. The average of the
standard deviation over the mean of these 100 samples at each pixel, 2.70%, compares well
with the bulk behavior of a single flat frame. Neglecting hot pixels, the standard deviation
of the pixel values in a single flat frame is σ/mean = 2.75%. Figure 4 shows the results
of this analysis with the 100-sample standard deviation over the mean on the left and the
individual flat frame on the right. From here, we can assume (1) each pixel behaves the
same and (2) if the digital number is sufficiently large (i.e., the number of samples from
the Poissonian probability of detection is sufficiently large), the associated measurement
uncertainty at each pixel is 2.7%.

We now compare the measurement uncertainty result from the empirical discussion
above with the theoretical, ideal measurement uncertainty due to shot noise. The pro-
duction of photoelectrons e− from photons incident on the CMOS sensor is Poissonian
in nature—in other words, each measurement samples from a Poisson distribution. Con-
veniently, the standard deviation of a Poisson distribution is equal to the square root of
its average. Assuming the number of samples from the camera’s Poissonian detection
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statistics is sufficiently large (the reported digital number is large enough), we can use this
fact to calculate the σ/mean we measured empirically in Figure 4.

Figure 4. (Left): A 2D matrix whose elements correspond to individual pixels’ standard deviation
over the mean value according to 100 measurements of the same external stimulus, thus quantify-
ing the distribution of digital numbers each pixel records. On average, the uncertainty is 2.696%.
(Right): A single flat field. The standard deviation of the corrected digital numbers over the average
digital number is 2.754%. Note that in both cases the data are dark-subtracted and vignette-corrected.
The uncertainty here compares well with the 2.5% we expect from shot noise alone.

We use the data in the right panel of Figure 4. The mean digital number is
⟨N⟩ = 604.8 ADU. The gain of the cameras g is measured and reported in the EMVA
1288 document as g = 2.653 e− · ADU−1 [16]. The mean number of photoelectrons is
then ⟨n⟩ = g · ⟨N⟩ (e−). We compute

√
⟨n⟩/⟨n⟩ = 2.5%, which compares well with our

empirical measurement of 2.7%.
In summary, we compared individual pixel behavior with the bulk behavior of a

whole image. There does not appear to be any significant contribution from pixel-to-pixel
variations, and Poisson statistics dominates the measurement uncertainty of our sensor.
This implies that every pixel on the camera behaves similarly and allows us to use one
image to produce a high-fidelity radiance measurement during the calibration procedure.

3.4. RSR Measurement

We used a Newport monochromator to measure the relative spectral response (RSR)
of our sensors. The RSR tells us how a sensor ‘sees’ some arbitrary incident spectral
radiance. Each optical component in a sensor system alters light as the light passes through
it. For example, a filter only allows light to transmit at particular wavelengths, and even
a transparent lens will affect light as it transmits. For us, each RSR is dominated by the
chosen filters. Each RSR should have a full width at half maximum (FWHM) of about
100 nm for the four sensors. The monochromator we used allowed us to probe the relative
spectral response of our sensors at each wavelength step of the monochromator. Since our
filters’ FWHMs are relatively wide, the 3.7 nm wavelength spacing of the monochromator
we used was fine enough to accurately measure the shape of each RSR.

The cameras, focused to infinity, were placed as near to the viewing port of the
monochromator as was possible. The signal from the port did not fill the FOV of our
cameras, so we selected a region of the image from which to extract the camera response
as a function of wavelength. An appropriate region is a region of the data where the view
port of the monochromator is in view. There were some minor systematic contaminants,
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like reflections from the edge of the viewing port, that prevent us from simply choosing
to incorporate data from the pixels with a signal. We used a Gaussian blur on the data
collected to wash out the effects of small contaminants and programatically find the center
of the monochromator view port. The digital numbers N recorded by the cameras at each
wavelength from the monochromator were normalized by the known power output of the
monochromator at each wavelength step, which produced an RSR with units of ADU W−1.
The RSR was then peak-normalized. The measured, peak-normalized RSRs are shown in
Figure 5.

Given the relative simplicity of our system’s optics, it is a worthwhile exercise to
compare the measured RSRs with those computed from the relevant transmission and
detection efficiencies, also shown in Figure 5. We estimated the sensor spectral response Rλ

using the equation
Rλ = τlens × QE × τfilter, (3)

where τlens and QE are the spectral transmission of the lens and CMOS sensor spectral
quantum efficiency, respectively. τfilter is the filter spectral transmission, and in the case
where there are two filters, it is the product of both of the filters’ transmissions. Taking the
above product and peak-normalizing the results gives the estimated theoretical responses
plotted in Figure 5.

Figure 5. The calculated RSRs (solid lines) and their measured counterparts (dots). There appears
to be good agreement between the calculated and measured RSRs for the BP470, BP540, and BP635
cameras. There is a clear discrepancy between the calculated BP735 RSR and the measured one.
We verified the apparent horizontal translation of the RSR by taking additional monochromator
measurements with a second monochromator (crosses). The discrepancy is within the ±10 nm margin
afforded by the manufacturer.

The measured and computed RSRs for the BP470, BP540, and the BP635 each agree
quite well. The measured and computed RSRs for the BP735 camera, on the other hand, do
not agree. We remeasured the RSR of the BP735 camera using a second monochromator
to rule out experimental error. The second set of monochromator measurements agree
with the measurements of the first. The BP735 filter is manufactured with a bandpass
tolerance of ±10 nm, which is consistent with the shift that we observe in our measure-
ments. Comparing the measured RSRs with a calculation is useful, but the measured
RSRs are a more reliable estimation of each sensor’s behavior and we use them to calibrate
the system.
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3.5. Calibration

We used the integrating sphere and stable plasma light sources to create a uniform
radiance field. Importantly, the lights were connected to the integrating sphere with
a variable aperture that allowed us to modulate the spectral radiance intensity. And
since each pixel responds in effectively the same way to an incident radiance, a single
image samples the normal distribution of digital numbers the camera might record at
each brightness level. The absolutely calibrated spectrometer (i.e., calibrated against a
NIST-traceable source) with 1% measurement uncertainty in the VIS-NIR measures the
spectral radiance of the integrating sphere.

The cameras, focused to infinity, were placed in front of the 8-inch aperture of the
integrating sphere at a distance of 4.75 inches in order to fill the 67◦ diameter diagonal
FOV of the cameras with uniform light. A camera image and a spectrum were gathered
simultaneously for three light levels for each camera. Figure 6 shows the range of spectral
radiances used for the BP540 camera as an example. The light levels we used were selected
based on the distribution of reported digital numbers at each level. Due to vignetting, the
cameras recorded a wide range of digital numbers regardless of incident light level. A high
light level was selected such that no normally behaving pixel was saturated. Inversely,
a low light level was selected such that no normally behaving pixel recorded a digital
number lower than the black level we fixed (100 ADU). A middle point was also recorded.
The cameras’ linearity, which deviates by only ±0.2%, is measured and reported in Al-
lied Vision’s EMVA 1288 document. With the camera linearity known, three light levels
is sufficient.

Figure 6. The spectral radiances, acquired by the absolutely calibrated spectrometer, used to sample
the dynamic range of our BP540 camera as an example. The absolute intensity of the spectral radiances
used to calibrate each camera vary, but the shape remains the same. The spectral radiances need to be
folded through the relative spectral response of each camera to obtain effective radiances that are
useful for calibration.

Given the RSRs measured in the previous section and Equation (2), we calculated
effective radiances and plotted them as a function of average digital number at each light
level. The measurement uncertainty in the spectrometer is a function of wavelength, but
in the VIS-NIR, the uncertainty is about 1% while the sensors report a digital number
with about 2.7% variation. We calibrated using orthogonal distance regressions and each
calibration is shown in Figure 7. The regression gives the calibration coefficients G and
D and their associated uncertainties. The calibration coefficients and intercepts for each
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camera are reported in Table 1. Given the factor of 10 difference between the two exposure
times at which these cameras were calibrated, the roughly factor of 10 difference between
the coefficients G is expected.

Figure 7. Calibration for each of the 4 cameras at 20 ms exposure time (top) and calibration for the
BP635 and BP735 cameras at 2 ms of exposure time (bottom). The vertical axis is the calculated
effective radiance reaching the camera based on the measured radiance spectra and measured relative
spectral response of the camera. The fit coefficients and their confidence intervals are reported
in Table 1.

Table 1. Calibration coefficients obtained by an orthogonal distance regression for each camera at
20 ms and 2 ms † of exposure time. The calibration assumes 1% uncertainty in the effective radiance
measurement (appropriate in the VIS-NIR) and 2.7% uncertainty in the corresponding digital number
recorded by the camera. The calibration analysis does not include a dark subtraction, so the coefficient
D should closely resemble the dark level (fixed at 100 ADU) of the camera.

Camera
G D

10−7 (W m−2 sr−1 nm−1

ADU−1)
(ADU)

BP470 5.827 ± 0.012 98.9 ± 2.7
BP540 6.088 ± 0.023 104.7 ± 4.5
BP635 7.571 ± 0.022 104.4 ± 2.5
BP735 5.186 ± 0.021 100.9 ± 4.4

BP635 † 72.84 ± 0.20 108.4 ± 2.7
BP735 † 49.99 ± 0.12 107.6 ± 2.7
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3.6. Dynamic Range

With known calibration coefficients, we can determine a physically relevant dynamic
range for the sensors. The sensitivity ceiling is the maximum recordable ADU value
converted to an effective radiance according to Equation (2). The EMVA1288 standard [20]
analysis [16] of the Alvium U-1800 319m we use shows that the cameras can reach a
maximum of 11.9 bits before the pixel response becomes nonlinear and our calibration
coefficients no longer apply. Substituting N = 211.9 − 1 into Equation (2) for each set of
calibration coefficients returns the upper bounds reported in Table 2. The sensitivity floor
requires a little more effort. The sensitivity floor is determined in part by the intrinsic
statistical variability of the sensor’s dark behavior, which we can quantify by examining
the average of many dark frames. Our determination of the standard deviation in units of
ADU of the average of many dark frames, σ, comes from 100 dark frames. We determined,
in Section 3.3, that the statistical behavior of the individual pixels is largely uniform. This
means that the standard deviation of the average dark frame is sufficient.

We define here a statistically significant detection when a pixel value exceeds five
standard deviations above the camera’s dark behavior. A 5σ threshold may seem steep,
but since we have 1544 × 2064 pixels, statistically in each image we should expect about
1 pixel value to rise above the sensitivity floor from noise alone. A looser threshold, take 3σ

as an example, implies that about 500 pixels would rise above the sensitivity floor simply
due to noise. According to the calibration coefficients, the minimum effective radiance is
recorded when N > D, and so a statistically significant detection occurs when N − D ≥ 5σ.
Each σ and floor are also reported in Table 2.

Note that the floor and ceiling reported here are valid before accounting for vignetting.
Since the vignette of our cameras drops signal by about 35% from center to edge, it is
possible for the camera to observe a bright light source near the edges of the image and
record a digital number that lies below 211.9 bits, which is a valid detection. Correcting for
vignetting by dividing by the normalized flat frame boosts that number above the ceilings
quoted in Table 2 while remaining a good measurement. The same is true for the sensitivity
floor, depending on whether or not pixels near the optical axis fluctuate above the value of
the pixel at the optical axis, which would result in dividing by a number larger than one. It
is possible that this may drop a significant measurement below the sensitivity floor.

Table 2. The standard deviation, sensitivity floor, ceiling, and dynamic range of each camera at 20 ms
and 2 ms † of exposure time.

Camera σ Floor Ceiling Range
(ADU) 10−6 (W m−2 sr−1 nm−1) 10−3 (W m−2 sr−1 nm−1)

BP470 1.03 2.99 2.23 3976
BP540 0.97 2.95 2.33 4222
BP635 1.26 4.75 2.89 3250
BP735 1.10 2.86 1.98 3723

BP635 † 1.39 50.56 27.83 2946
BP735 † 0.86 21.58 19.10 4762

We choose to operate the cameras in 12-bit mode, which corresponds to 212 possible
ADU bins for signal to be sorted into rather than the 8-bit mode corresponding to 28 bins.
While this does not increase the dynamic range of the camera (the total range between
saturation and the noise floor of a camera at a given configuration), a higher precision
increases the value of elevated data products. The ability for the camera electronics to
reliably sort a signal into the correct digital number bin depends on both the size of the bin,
referred to as the level of digitization, and the camera’s noise. If the bin size is too small in
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comparison with the expected noise, then noise dominates the camera’s sensitivity. We can
quantify this by taking the ratio of the bit depth to σ, also reported in Table 2.

Our cameras’ sensitivity is superior to 8-bits of depth across the board, while for some
cameras and configurations we find the noise tends to dominate. Given the criterion for lin-
ear response up to N = 211.9 − 1 = 3821 reported in the EMVA1288 analysis document [16],
the camera sensitivity is sufficient for our application.

3.7. Effective Radiance Uncertainty

Quantifying the radiance measurement uncertainty of our sensors requires calculating
the uncertainty ∆L from Equation (2) in the standard way, which is appropriate because N,
G, and D are not correlated:

∆Leff(G, N, D) =

√(
∂Leff
∂G

∆G
)2

+

(
∂Leff
∂N

∆N
)2

+

(
∂Leff
∂D

∆D
)2

. (4)

The slope and intercept confidences, ∆G and ∆D, respectively, are reported in Table 1.
The digital number uncertainty ∆N is proportional to N, which means the uncertainty
calculated above is a function of the digital number measured. We perform the calculation
above, assume ∆N = 0.027 · N, and plot percent uncertainties ∆L/L as a function of N in
Figure 8.

Figure 8. Percent uncertainties calculated by taking the ratio of Equations (2) and (4). The short-
exposure calibrations are marked with a dagger. The uncertainty asymptotes near N = 100 ADU
because each D is near 100 ADU. The measurement uncertainty approaches 2.7%, plotted with a
horizontal dotted line, because the CMOS sensor measurement uncertainty dominates as N increases.

Naturally, there is a singularity near N = 100 ADU, which is easily seen when
comparing the calibration coefficients D with N ≈ 100 ADU in the context of Equation (2).
Given that ∆G and ∆D are constants and that ∆N is proportional to N, the percent error
should approach the CMOS measurement uncertainty, 2.7%, as is indeed seen.

4. Data Product Demonstration
As an example, we show calibrated images of nighttime light observations, on a log

scale, of an agricultural burn in Figure 9, with the acquisition details outlined in the figure
caption. The images were calibrated using Equation (2) and then divided by master flat
frames with optical axes found according to Section 3.2 to correct for vignetting. We will
conduct a campaign in the future that will allow us to perform a comprehensive analysis of
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our data products. We are limited in a large part by the lack of a georectification pipeline,
which is required to compare data across sensors. Georectification for this iteration of
NightHawk is underway and will be presented in a later manuscript led by S. Tammes.

Figure 9. Calibrated images in false color of an agricultural burn. Horizontal lines on the color bars
indicate each camera’s sensitivity floor, with a second line on the BP735 image that indicates the
ceiling. The images were treated with a flat field, so the floor and ceiling are here as a reference. The
images were acquired near (ϕ, λ) = (31.7454,−82.0087) on 9 February 2024 at 5:40 PM. The images
were taken at an altitude of 1979 m above sea level, or about 1930 m above ground level, which
corresponds to a pixel size of about 0.83 m, which implies the 672 × 782-pixel scene here represents
about 0.36 square kilometers. Sunset occurred at 6:17 PM. With a low amount of daylight, some
smoke is visible in the blue channel from the fire and the fire is still resolved in the near-infrared
channel, where solar contamination is strongest.

We expect most signal from the fire itself to appear in the BP735 image, which is borne
out in the data. Decreasing levels of signal with decreasing wavelength are also expected,
which is visually apparent when we compare the shape, size, and continuity of the fire
fronts between the images in the set, which is especially true in the BP540 image. In the
BP470 image, we are also able to discern the smoke column with acceptable signal, since
the majority of the smoke plume is above the sensitivity floor of the BP470 camera. The
ability to observe smoke with NightHawk enables additional science beyond detecting and
characterizing burning biomass flaming. The light reflecting off of the smoke in this set of
images is likely scattered light from the sun at dusk.

Light in the VIS-NIR is attenuated as it travels toward the sensor and through smoke.
Given that attenuation of VIS-NIR light by smoke is inversely proportional to wave-
length, light will be most attenuated in the BP470 band and least attenuated in the BP735
band. This does not confound our sensor’s ability to identify natural flaming since, in
Kaaret et al. [15], we demonstrated that the key band ratio for identifying flaming is
BP735/BP635 (burning biomass has the largest ratio in comparison with other nighttime
light sources). Light in the BP635 bandpass will be more attenuated than light in the BP735
bandpass, which enhances the flaming detection criterion.

The majority of pixels in each image are above each sensitivity floor, due in part to
the presence of sunlight, with no saturation in the BP470, BP540, and BP635 images. There
are 260 pixels that are saturated in the BP735 image, with an additional 30 pixels that are
above the sensitivity ceiling of the camera operating at 20 ms (detected prior to correcting
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for vignetting). There is a companion observation at 2 ms of exposure time, which we can
use to verify that our strategy of using multiple exposure times is effective. We compare
the data in the BP735 image at 20 ms of exposure time with the data in the 2 ms exposure in
Figure 10.

Figure 10. A closer view of the brightest portion of the fire in Figure 9. The short-exposure image
(left) has no data above its sensitivity ceiling. The long-exposure section on the (right) contains
239 pixels, highlighted in red, that are above the sensitivity ceiling of the camera operating at 20 ms
of exposure time.

The short-exposure companion observation contains no pixels that report values above
the camera’s sensitivity ceiling. It is also clear that, for this set of images, operating at
2 ms of exposure time is too short to observe much reflected NIR light in comparison with
observable structures in the 20 ms image. It is difficult to immediately integrate data from
both images. First, we require georectification to tell us which pixel corresponds to what
location on the ground. Second, even though both exposure times are calibrated with equal
fidelity, the two exposure times have different ground sample sizes. Both of these problems
require careful consideration of the attitude, velocity, and altitude data measured by the
IMU. An appropriate georectification pipeline can coordinate the two companion images
such that oversaturated pixels in the long-exposure image and undersaturated pixels in the
short-exposure image can be unified, as well as integrating information across sensors.

5. Summary
Nighttime light observations of wildfire activity are increasingly important with

increasing nighttime wildfire activity across the globe [14]. Our device observes VIS-NIR
light at night which, when combined with our filter suite, allows us to target signal from
active flaming. In this manuscript, we showed the following:

• When radiometrically calibrated, NightHawk has effective radiance sensitivity that
spans between 10−6 and 10−3 W m−2 sr−1 nm−1 with the cameras calibrated at
20 ms of exposure and 10−5 and 10−2 W m−2 sr−1 nm−1 at 2 ms of exposure, with
uncertainties below 5% across the board (Table 1).

• The range of the sensitivity floor, depending on the filter, is 3–5 10−6 W m−2 sr−1 nm−1,
and the sensors have dynamic ranges between 2946 and 4222.

• Upon deployment, NightHawk can indeed observe and quantify NTL from burning
biomass at scale, including resolving fire fronts.

The NightHawk platform prototype as it stands democratizes high-quality NTL ob-
servations of natural flaming, and provides a proof of concept for a simpler, broadband
multispectral regime for remotely sensing burning biomass. This prototype also demon-
strates the VIS-NIR technology of a remote sensing platform suitable for flight on a manned
aircraft or UAV that is optimized to measure the VIS-NIR portion of burning biomass’s visi-
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ble emission fraction. If paired with a suitable IR sensor, remotely sensing the combustion
efficiency of natural flaming is achievable [5,6].

Author Contributions: Conceptualization, P.K. and J.W.; methodology, C.A.F., P.K. and E.J.I.; software,
C.A.F. and S.T.; validation, C.A.F., S.T. and E.J.I.; formal analysis, C.A.F.; investigation, C.A.F., S.T.,
J.M., W.M., J.K. and F.M.J.; resources, P.K., J.W., C.H.R., T.S. and E.J.I.; data curation, C.A.F., S.T. and
W.J.; writing—original draft preparation, C.A.F.; writing—review and editing, P.K., J.W., M.L. and
E.J.I.; visualization, C.A.F.; supervision, P.K., M.L., C.H.R. and J.W.; project administration, P.K. and
J.W.; funding acquisition, P.K. and J.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported in part by Public-Private Partnership (P3) program of the
University of Iowa, the NASA’s Terra, Aqua, and SNPP program (grant 80NNSC21L1976), and by
NASA’s Modeling and Analysis Program (MAP, grant 80NSSC21K1494).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: The authors would like to acknowledge the efforts of staff at both the Department
of Physics and Astronomy’s machine shop and the Operator Performance Laboratory for producing
custom parts for our prototype. We also acknowledge the anonymous referees whose thoughtful
comments improved our work.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
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