



# **JGR** Atmospheres

# RESEARCH ARTICLE

10.1029/2025JD044623

#### **Key Points:**

- Warm-season soil NO<sub>x</sub> emissions (SNO<sub>x</sub>) account for 23%–27% of total NO<sub>x</sub> emissions in China during 2015–2022
- As anthropogenic emissions decline, SNO<sub>x</sub> changes can promote the increase in warm-season O<sub>3</sub> concentrations
- O<sub>3</sub> pollution control must consider both soil and anthropogenic NO<sub>x</sub> emissions and take into account regional and seasonal differences

#### **Supporting Information:**

Supporting Information may be found in the online version of this article.

#### Correspondence to:

T. Sha, tong-sha@sust.edu.cn

#### Citation:

Sha, T., Yang, S., Chen, Q., Wei, J., Ma, M., Gao, Y., et al. (2025). Elucidating contributions of anthropogenic and soil NO<sub>x</sub> emissions changes to O<sub>3</sub> trends over China. *Journal of Geophysical Research: Atmospheres, 130*, e2025JD044623. https://doi.org/10.1029/2025JD044623

Received 17 JUN 2025 Accepted 18 OCT 2025

#### **Author Contributions:**

Conceptualization: Tong Sha, K. Folkert Boersma, Jun Wang Data curation: Jing Wei Formal analysis: Tong Sha, Siyu Yang Funding acquisition: Tong Sha Investigation: Tong Sha, Siyu Yang Methodology: Tong Sha, Siyu Yang Resources: Mingchen Ma, Yufan Zhu,

Supervision: Qingcai Chen Visualization: Siyu Yang Writing – original draft: Tong Sha, Siyu Yang

Writing – review & editing: Tong Sha, Siyu Yang, Qingcai Chen, Jing Wei, Yang Gao, K. Folkert Boersma, Jun Wang

# Elucidating Contributions of Anthropogenic and Soil NO<sub>x</sub> Emissions Changes to O<sub>3</sub> Trends Over China

Tong Sha<sup>1,2</sup> , Siyu Yang<sup>1,2</sup>, Qingcai Chen<sup>1</sup> , Jing Wei<sup>3</sup> , Mingchen Ma<sup>4</sup>, Yang Gao<sup>5</sup> , Yufan Zhu<sup>2</sup> , Yan Hu<sup>2</sup>, K. Folkert Boersma<sup>6,7</sup> , and Jun Wang<sup>8</sup>

<sup>1</sup>Shaanxi University Key Laboratory of Industrial Pollution Control and Environmental Health, School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China, <sup>2</sup>Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollution, Xi'an, China, <sup>3</sup>MEEKL-AERM, College of Environmental Sciences and Engineering, Institute of Tibetan Plateau, and Center for Environment and Health, Peking University, Beijing, China, <sup>4</sup>State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, <sup>5</sup>Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, and Laoshan Laboratory, Qingdao, China, <sup>6</sup>Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands, <sup>7</sup>Satellite Observations Department, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands, <sup>8</sup>Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, IA, USA

**Abstract** Surface ozone (O<sub>3</sub>) pollution is a critical environmental challenge, but existing research predominantly focuses on its summer peaks. Our analysis shows that high-O<sub>3</sub> episodes now expand into spring and autumn in China, with warm-season (April-September) maximum daily average 8-hr (MDA8) O<sub>3</sub> concentrations rising at 5.2 μg m<sup>-3</sup> yr<sup>-1</sup> during 2014–2023. Current O<sub>3</sub> mitigation focuses on anthropogenic NO<sub>x</sub> emissions (ANO<sub>x</sub>) while neglecting the contribution of soil NO<sub>x</sub> emissions (SNO<sub>x</sub>) to tropospheric O<sub>3</sub> formation. Here, we developed an innovative framework combining the machine learning model (XGBoost) with the Unified Inputs for WRF-Chem (UI-WRF-Chem) to quantify the impacts of ANO, and SNO, on O<sub>3</sub> increases during 2015–2019. Results show that although warm-season SNO<sub>x</sub> constitute only 23%–27% of total  $NO_x$  emissions in China (2015–2022), they generally drive  $O_3$  increases, exhibiting distinct regional and seasonal heterogeneities. Compared to urban areas, the O<sub>3</sub> formation regimes in rural areas of the Yangtze River Delta region predominantly shift to NO<sub>x</sub>-limited, making O<sub>3</sub> highly sensitive to SNO<sub>x</sub>. SNO<sub>x</sub> changes lead to warm-season MDA8 O<sub>3</sub> increases of 1.0–1.3 μg m<sup>-3</sup> during 2016–2019 relative to 2015. Although similar regime shifts have occurred, rural areas in the Beijing-Tianjin-Hebei and Fenwei Plain regions still retain strong VOCs-limited characteristics; thus, SNO<sub>x</sub> perturbation impacts on O<sub>3</sub> are smaller. Although summer SNO<sub>x</sub> are higher, their contribution to O<sub>3</sub> increases in transitional seasons (April, May, and September) shows an upward trend, suggesting more attention should be paid to fertilization-driven SNO<sub>x</sub>. Our study highlights that future O<sub>3</sub> control strategies should account for SNO<sub>x</sub> and their regional and seasonal differences.

**Plain Language Summary** Surface ozone  $(O_3)$  pollution in China is no longer confined to summer. Our study reveals that high- $O_3$  episodes have extended into spring and autumn, with concentrations increasing significantly each year. While strategies to reduce anthropogenic  $NO_x$  emissions  $(ANO_x)$  remain crucial for  $O_3$  mitigation, our study highlights the underappreciated role of soil  $NO_x$  emissions  $(SNO_x)$ , which constitute 23%–27% of total  $NO_x$  during warm seasons (April–September) in China. In this study, we employed an innovative approach combining machine learning and a numerical model to assess the impacts of  $ANO_x$  and  $SNO_x$  on warm-season  $O_3$  increases from 2015 to 2019. Our simulations suggest that  $SNO_x$  can exacerbate  $O_3$  pollution across China, and its impact varies by region and season. Notably, fertilization-driven  $SNO_x$  contribute to rising  $O_3$  levels, even though soil emission levels are lower than in summer. As China successfully reduces industrial and vehicle emissions,  $O_3$  formation is likely to become more sensitive to  $SNO_x$ . Our findings highlight the importance for policymakers to develop tailored, season-specific strategies for controlling soil emissions to effectively mitigate  $O_3$  pollution.

#### 1. Introduction

Surface ozone  $(O_3)$  is an emerging air pollution problem in China. Long-term exposure to  $O_3$  pollution can pose a considerable threat to human health and exert substantial impacts on terrestrial ecosystems, agricultural yields,

© 2025. American Geophysical Union. All Rights Reserved.

SHA ET AL. 1 of 19

and climate change (Li, Gao, et al., 2024; Wang, Lin, et al., 2022; Zhang, Xu, et al., 2022). Tropospheric  $O_3$  primarily generates from photochemical reactions of nitrogen oxides ( $NO_x = NO + NO_2$ ) and volatile organic compounds (VOCs) (Roelofs & Lelieveld, 1997; Wang et al., 2017). Since 2013, the Chinese government has implemented a series of air pollution control measures that have effectively reduced anthropogenic  $NO_x$  ( $ANO_x$ ) and particulate matter emissions, leading to  $PM_{2.5}$  pollution mitigation (Li et al., 2019a, 2019b), but the surface  $O_3$  concentrations still increased over the past decade (Liu et al., 2023). Many studies attribute the  $O_3$  increase to the changes in meteorological conditions, precursor emissions, and climate change (Ni et al., 2024; Yang et al., 2024; Yao et al., 2024), specifically reductions in anthropogenic emissions and weakening of aerosol radiative effects (Li et al., 2020; Ma et al., 2020; Wang, Huang, et al., 2022).

There is a nonlinear relationship between photochemically generated  $O_3$  and its precursors, including  $NO_x$  and VOCs (Hou et al., 2022; Jiang et al., 2022). These precursors are emitted from anthropogenic sources (e.g., fuel combustion from power plants and industry, transportation, and residential) and natural sources (e.g., soils, biomass burning, and lightning) (Ding et al., 2021; Huber et al., 2020; Lu et al., 2021). A recent study found that continuous decreases in ANO<sub>x</sub> have effectively reduced tropospheric  $NO_2$  vertical column densities ( $NO_2$  columns) in urban areas of China during summer 2011–2023, while  $NO_2$  columns in rural areas showed slower changes and even displayed a stabilized or slight increase in some natural areas (Wang et al., 2024). This discrepancy suggests that the  $NO_2$  budget in rural areas may be more influenced by natural sources.  $NO_x$  emissions from soils, accounting for 12%–20% of global  $NO_x$  emissions (Vinken et al., 2014; Yan et al., 2005), are dynamically controlled by diverse factors, such as meteorological factors, soil temperature and moisture, available nitrogen content in soils, and agricultural practices. Despite the influences from natural nitrogen pool and agricultural fertilizer input, which are to some extent human-controlled, soil  $NO_x$  emissions (SNO<sub>x</sub>) are conventionally considered as a natural source and overlooked in the current air pollution control strategies.

Chemical transport models (CTMs), such as WRF-Chem, WRF-CMAQ, and GEOS-Chem, have become increasingly popular in addressing  $O_3$ -related issues in China (Zhang et al., 2023), providing insights into understanding the role of local emissions and regional transport (Wang, Wang, et al., 2022; Zhang, Yu, et al., 2022), contributions of specific emission sources (Liu, Ma, et al., 2020), and policy effectiveness (Liu et al., 2023). By using CTMs, previous studies found that SNO<sub>x</sub> in agricultural areas of China can increase summer  $O_3$  concentrations by 5%–32% (Sha et al., 2024; Wang, Bei, et al., 2022; Wang, et al., 2024). However, previous CTM studies mainly focus on the impact of SNO<sub>x</sub> on summer  $O_3$  pollution in individual months (typically from June to August), with limited attention paid to the specific contribution of SNO<sub>x</sub> to long-term  $O_3$  variations. Since CTMs rely on simplifications of complex chemical mechanisms and physical processes, they are subject to uncertainties in parameterization schemes as well as inaccuracies in input data (e.g., meteorological and emission data), making it challenging to reproduce long-term trends and short-term variations in  $O_3$  across China, particularly near the surface (Lu et al., 2025). This leads to uncertainties in the attribution of  $O_3$  trends based on CTMs (Huang et al., 2021, 2025).

Compared with CTMs, machine learning (ML) methods, such as random forest, extreme gradient boosting, and light gradient boosting, have the advantages of computational efficiency. These approaches only require certain key predictors (e.g., meteorological variables and precursor emissions, etc.) to establish statistical models for O<sub>3</sub> concentrations (Hou et al., 2022; Zhu et al., 2023). Moreover, they are more proficient and efficient in dealing with nonlinear problems and thus have been widely applied to predict O<sub>2</sub> levels (Kuo & Fu, 2023; Ning et al., 2024). However, most ML methods are fundamentally black-box models, with inherent drawbacks of limited interpretability and lack of physicochemical mechanisms (Hou et al., 2022). The recently developed Shapley Additive Explanations (SHAP) technique provides a framework for quantifying the importance and interactions of multidimensional features, thereby solving some of the black-box limitations in ML. Although many studies have used the SHAP method to reveal the driving factors of particulate matter and O<sub>3</sub> pollution (Cheng et al., 2023; Zhang et al., 2024), it is worth noting that, unlike CTMs, the SHAP-based ML approach still cannot quantify the specific contributions of driving factors to O<sub>3</sub> formation, but only provides a ranking of the importance of influencing factors. Furthermore, previous studies typically considered natural emissions to be constant or excluded when training ML models to predict O<sub>3</sub> levels (Ning et al., 2024; Wang, Zhao, et al., 2023; Yin et al., 2022). However, natural emissions such as SNO<sub>x</sub> and BVOCs strongly depend on the meteorological conditions, which can lead ML models to overemphasize the importance of other factors affecting O<sub>3</sub>.

SHA ET AL. 2 of 19

With the decline in anthropogenic emissions, further understanding the interaction between soil and ANO<sub>x</sub> emissions and their impact on O<sub>3</sub> formation is crucial for developing more accurate mitigation strategies. In this study, we first reveal the long-term trends of O<sub>3</sub> during warm seasons (April-September) from 2010 to 2023 based on the ChinaHighO<sub>3</sub> data set (Wei et al., 2022), focusing on three key regions, that is, Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), and Yangtze River Delta (YRD) region. We then explain the reasons for the warm-season O<sub>3</sub> trend from the perspective of NO<sub>x</sub> emission changes. Since the period from 2015 to 2019 is not affected by the COVID-19 pandemic and is more conducive to studying the quantitative impact of NO. emissions changes on the long-term trend of O<sub>3</sub>, these years are selected as the study period. The XGBoost model is chosen as the core framework for O<sub>3</sub> trend attribution, that is, to quantify the contribution of ANO<sub>x</sub> and SNO<sub>x</sub> to O<sub>3</sub> increase under declining anthropogenic emissions, which incorporates the dynamical natural emissions outputs from the UI-WRF-Chem model. Moreover, the UI-WRF-Chem model is applied to further verify whether the ML method could reliably quantify the response of O<sub>3</sub> pollution to emission changes. This study aims to assess the dynamic impacts of SNO<sub>x</sub> on warm-season O<sub>3</sub> formation and develop dynamic O<sub>3</sub> mitigation strategies.

# 2. Materials and Methods

# 2.1. Observational Data of O<sub>3</sub> and Its Precursors

The hourly surface O<sub>3</sub> concentrations measurements at national monitoring sites for the period of 2014–2023 are obtained from the China National Environmental Monitoring Center (CNEMC) and converted to the maximum daily average 8-hr (MDA8) O<sub>3</sub> concentrations. Due to the lack of surface O<sub>3</sub> site observations before 2013 and the fact that CNEMC sites are mainly located in urban areas, while scarce in vast rural regions, we also incorporate the China High Air Pollutants (CHAP) data set developed by Wei et al. (2022) (CHAP: https://zenodo.org/records/13342827, last access: 1 December 2024). This data set employs a space-time extremely randomized tree (STET) model to estimate MDA8 O<sub>3</sub> concentrations (ChinaHighO<sub>3</sub>) based on solar radiation intensity and surface temperature, combining ground-based observations, remote sensing products, atmospheric reanalysis, and an emission inventory. The spatial resolution is 1 × 1 km<sup>2</sup> and covers both urban and rural regions in China. Nighttime light data sets from DMSP/OLS (2010–2012) and NPP-VIIRS (2013–2023) with a spatial resolution of 500 × 500 m<sup>2</sup> (https://payneinstitute.mines.edu/eog/nighttime-lights/, last access: 1 December 2024) are used to dynamically distinguish the O<sub>3</sub> concentrations in urban and rural areas, employing a digital number (DN) threshold of 25 (Elvidge et al., 2021). This approach enables us to analyze the trends and distribution characteristics of O<sub>3</sub> in China from 2010 to 2023, covering the periods before and after the implementation of emission reduction policies and the COVID-19 pandemic.

The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite was launched in 2004. It passes over the local area at around 13:45 local time (LT), with an orbital scanning width of 2,600 km and a spatial resolution of 13 km × 24 km (Levelt et al., 2006), and provides a global coverage once a day until 2007 and every two days thereafter (Dobber et al., 2006; Krotkov et al., 2017). The tropospheric columns of NO<sub>2</sub> from the OMI/Aura Level-3  $NO_2$  product (OMNO2d 003) with a spatial resolution of  $0.25^{\circ} \times 0.25^{\circ}$  for the period of 2015–2022 are used (https://disc.gsfc.nasa.gov/datasets/OMNO2d\_003/summary?keywords=NO2, last access: 1 December 2024). The OMI NO<sub>2</sub> column product shows relatively high consistency with other satellite products. And the uncertainty depends on incomplete knowledge of the surface albedo, cloud and aerosol interference, and a priori NO<sub>2</sub> profile. Some of these uncertainties can be eliminated by averaging, and some persist when averaging over multiple pixels or over longer time periods (Glissenaar et al., 2025; Rijsdijk et al., 2025). Therefore, pixels with a cloud cover fraction below 30% and a solar zenith angle (SZA) less than 85% are selected for analysis. The total vertical column densities of HCHO are from the OMI/Aura Level-3 HCHO product (OMHCHOd 003), with a spatial resolution of 0.1° × 0.1° (https://disc.gsfc.nasa.gov/datasets/OMHCHOd\_003/summary?keywords=HCHO, last access: 1 December 2024). The uncertainties in the OMHCHOd product are effectively controlled within 30% in polluted areas (González Abad et al., 2015; Li, Xu, et al., 2021; Rijsdijk et al., 2025). To ensure data quality and stability, pixels with a main data quality flag of 0, a cloud fraction below 30%, and an SZA less than 70% are selected. Since HCHO primarily exists in the troposphere, its total columns can be regarded as the tropospheric columns (Krotkov et al., 2017; Zhu et al., 2014).

SHA ET AL. 3 of 19



# 2.2. Meteorology and Emission Data

The hourly meteorological data are from the fifth generation European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5, horizontal resolution of  $0.1^{\circ} \times 0.1^{\circ}$ , https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=download). Among them, 2 m temperature (T2m, unit: K), 2 m dewpoint temperature (Td2m, unit: K), surface net solar radiation (Radiation, unit: J m<sup>-2</sup>), 10m u-component and v-component of wind (U10, V10, unit: m s<sup>-1</sup>), surface pressure (Press, unit: Pa), and total precipitation (Precp, unit: m) are used to train the XGBoost model.

The anthropogenic emissions of O<sub>3</sub> precursors in China are from the Multi-resolution Emission Inventory model for Climate and Air Pollution Research (MEIC) (http://meicmodel.org.cn, last access: 1 December 2024) (Geng et al., 2024; Li et al., 2017). The biogenic volatile organic compound (BVOCs) emissions calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version v2.1 are from (Ma et al., 2021), which includes the hourly emission flux at a spatial resolution of  $27 \times 27 \text{ km}^2$  in China. There is a total of 19 emission species, including isoprene and terpenes derived from more than 100 emission compounds (Ma et al., 2019, 2021), and the BVOCs used to train the XGBoost model are the sum of all species. SNO<sub>x</sub> are calculated using the Berkeley-Dalhousie-Iowa Soil NO Parameterization (BDISNP) coupled within the UI-WRF-Chem model. BDISNP is based on the BDSNP scheme and has undergone a series of improvements to enhance its applicability in the WRF-Chem model. The updated scheme has been successfully applied to quantitatively study the impact of SNO<sub>x</sub> on O<sub>3</sub> pollution (Sha et al., 2021, 2024). Given the substantial impact of fertilizer nitrogen applications on SNO<sub>x</sub>, and China has implemented a strategic shift since 2016 to reduce the utilization of nitrogen fertilizers and increase the application of compound fertilizers (Wang et al., 2024), we consider the temporal variations of both nitrogen fertilizers and compound fertilizers when calculating SNO<sub>x</sub> by following the method of (Huang et al., 2023). Thus, unlike previous ML models for predicting O<sub>3</sub>, our XGBoost model incorporates dynamically changing SNO<sub>x</sub> and BVOCs.

#### 2.3. Methods

#### 2.3.1. Determination of O<sub>3</sub> Formation Regime

The most commonly used methods for identifying the O<sub>3</sub>-NO<sub>x</sub>-VOCs sensitivity include the observed photochemical indicators (e.g.,  $O_3$  production efficiency (OPE =  $\Delta O_3/\Delta NO_2$ ) and  $H_2O_2/NO_2$  (or  $H_2O_2/HNO_3$ ) ratio) and observation-based models (OBMs), which combine in situ field observations and chemical box models. However, ground-based measurements for photochemical indicators are often limited in temporal and spatial extent. Also, the OBM analysis requires measuring NO at sub-ppb levels and more than 50 different types of VOCs with high accuracy, which is difficult to achieve (Wang et al., 2017; Xue et al., 2014). Satellite remote sensing offers a valuable alternative way for investigating long-term periods of the O<sub>3</sub> formation regime on large spatial scales. It can provide continuous global observations on a daily basis for two indicative species of O<sub>3</sub> precursors, that is, NO<sub>2</sub> for NO<sub>x</sub> (Chen et al., 2024; Travis et al., 2016) and formaldehyde (HCHO) for VOCs (Li, Jacob, et al., 2021; Liu, Tang, et al., 2020). NO<sub>x</sub> can be approximated from the satellite observation of NO<sub>2</sub> columns because of the short lifetime of NO<sub>x</sub> and high ratio of NO<sub>2</sub>/NO<sub>x</sub> in the planetary boundary layer (PBL) (Jin & Holloway, 2015; Johnson et al., 2024). Meanwhile, HCHO is an intermediate of the oxidation reaction of various VOCs in the atmosphere. The production of HCHO is approximately proportional to the summed rate of reactions of VOC with OH radicals (Wang et al., 2010), and HCHO is also mainly concentrated within the PBL over polluted regions (Johnson et al., 2024). Therefore, HCHO can be used as a tracer for VOCs in the absence of other VOC observations (Chan et al., 2019; Duncan et al., 2010).

The satellite-based diagnostic method, that is, the ratio of HCHO to  $NO_2$  columns (the Formaldehyde-to- $NO_2$  Ratio, FNR), has previously been proven to be highly consistent with the understanding of surface  $O_3$  chemistry and is thus widely used as an effective indicator for determining the  $O_3$  formation regimes (Chen et al., 2023; Cheng et al., 2019; Jin et al., 2020; Jin & Holloway, 2015; Wang, Zhao, et al., 2023). This method demonstrates robust consistency with other approaches in China, such as observed photochemical indicators and OBMs-based analysis (Cao et al., 2022; Lee et al., 2022; Li, Jacob, et al., 2021; Ren & Xie, 2022; Shen et al., 2021; Tong et al., 2023; Yuan et al., 2021). To investigate the long-term variation of  $O_3$  formation regimes across different regions of China, we choose a satellite-based method to describe the surface  $O_3$  formation regimes. Given that the overpass time of OMI satellite aligns with the peak period of  $O_3$  photochemical formation, it serves as an optimal window for investigating  $O_3$  formation regimes (Ren et al., 2021; Zhang et al., 2023). Concurrently, MDA8  $O_3$  is

SHA ET AL. 4 of 19

Wang, Zhao, et al., 2023).

10.1029/2025JD044623 an indicator that characterizes the maximum daytime O<sub>3</sub> concentrations, which can thereby reflect the period of the strongest photochemical formation. Therefore, we integrate these two metrics, the FNR from OMI satellite observations and MDA8 O<sub>3</sub> concentrations from ChinaHighO<sub>3</sub> data set, to explore the long-term variations of O<sub>3</sub> formation regimes over three key regions (BTH, FWP, and YRD) of China during 2015-2022 (Chen et al., 2024;

The range of FNR values marking the transitional regime vary regionally and temporally (Schroeder et al., 2017). We follow the approach of Wang, Zhao, et al. (2023) and use nonlinear statistical models to examine the empirical relationship between O<sub>3</sub> formation and its precursors. To determine the FNR thresholds, we divide the satellitebased daily FNR during warm seasons from 2015 to 2022 into 200 intervals across different regions, calculate the 95th percentile of observed surface MDA8 O<sub>3</sub> concentrations for each FNR, and then evaluate their statistical relationship using a fourth-order polynomial model. Assuming the peak of the fitted curves represents the transition from VOCs-limited to NO<sub>x</sub>-limited regimes, we define the transition regime as the FNR range corresponding to the top 20% of the MDA8 O<sub>3</sub> 95th percentile distribution. The zone with FNR values below the minimum of this range is classified as the VOCs-limited regime, while those above the maximum value of this range are classified as the NO<sub>x</sub>-limited regime. The zone with FNR values within this range is considered as mixed-limited regimes.

#### 2.3.2. Machine Learning Model and Simulation Experiment Design

XGBoost is a supervised boosting algorithm that can effectively reduce the risk of overfitting, capture the nonlinear relationships among predictor variables, and provide rapid and accurate solutions to science problems (Chen & Guestrin, 2016). Compared with other bagging tree models, such as random forest, XGBoost can handle more complex data with fewer computing resources. It also has higher interpretability and computational efficiency than neural networks (Hu et al., 2017). Furthermore, it is less computationally expensive compared to the traditional CTMs, making it suitable for studying the long-term response of O<sub>3</sub> pollution to its precursors' emissions changes. To account for the spatiotemporal autocorrelation of O<sub>3</sub> and its covariates, the spatiotemporal information is also considered in the XGBoost model, including day of the year (DOY), longitude (Lon), and latitude (Lat) over the study domain. Both precipitation and emissions are processed as daily totals, while all other input variables are calculated as daily averages to maintain temporal consistency with the target variable, that is, MDA8 O<sub>3</sub>. Bilinear interpolation and averaging are applied for upscaling and downscaling variables, respectively, to ensure a consistent spatial resolution of  $0.1^{\circ} \times 0.1^{\circ}$  (Wang, Zhao, et al., 2023). Geographic locations with missing or invalid data for any day are excluded from the training data set to ensure data integrity and model reliability.

The XGBoost model for predicting MDA8 O<sub>3</sub> in this study is trained using 80% of the data from 2015 to 2019. The training data set included the following variables, that is, SNO<sub>x</sub>, BVOCs emissions, anthropogenic emissions (including ANO<sub>x</sub> and AVOCs), OMI NO<sub>2</sub> and HCHO columns, surface MDA8 O<sub>3</sub> and NO<sub>2</sub> concentrations from the ChinaHighO<sub>3</sub> and ChinaHighNO<sub>2</sub> data sets of CHAP, 7 meteorological variables from ERA5, and spatiotemporal variables (Lat, Lon, and DOY). The remaining 20% of the data is used to test the model (Figure 1). Correlation coefficients (R<sup>2</sup>), root mean square error (RMSE), and mean absolute error (MAE) are used to evaluate model performance.

Quantifying the contribution of emission changes to long-term trends in O<sub>3</sub> pollution based on CTM methods requires high computing resources. The ML model provides an alternative approach, which is applied here. By using the trained XGBoost model, a series of sensitivity simulations are conducted to assess the impacts of changes in SNO<sub>x</sub> and ANO<sub>x</sub> from 2015 to 2019 on warm-season MDA8 O<sub>3</sub> concentrations. The descriptions of the sensitivity simulations are shown in Table 1. The O<sub>3</sub>\_2015 experiment is the MDA8 O<sub>3</sub> concentrations in 2015 predicted by the baseline XGBoost model.  $\Delta O_3$ \_ANO<sub>x</sub>,  $\Delta O_3$ \_SNO<sub>x</sub>, and  $\Delta O_3$ \_A + SNO<sub>x</sub> represent the predicted O<sub>3</sub> concentrations when ANO<sub>x</sub>, SNO<sub>x</sub>, and both ANO<sub>x</sub> and SNO<sub>x</sub> are adjusted to the levels of 2016–2019, respectively. Comparing these three experiments results with O<sub>3</sub>\_2015, we can quantify the contribution of O<sub>3</sub> increases during this period caused by the change in  $NO_x$  emissions from 2016 to 2019 relative to 2015. Notably, due to the significant impacts of NO<sub>x</sub> emissions on the atmospheric NO<sub>2</sub> budget, another XGBoost model is conducted to predict variations in NO<sub>2</sub> columns and surface concentrations resulting from NO<sub>x</sub> emission changes (Table 2). The inputs of the model for predicting the changes in the NO<sub>2</sub> level here are exclusively constrained to ANO<sub>x</sub> and SNO<sub>x</sub>, and the baseline simulations predict the NO<sub>2</sub> columns and surface concentrations caused by

SHA ET AL. 5 of 19

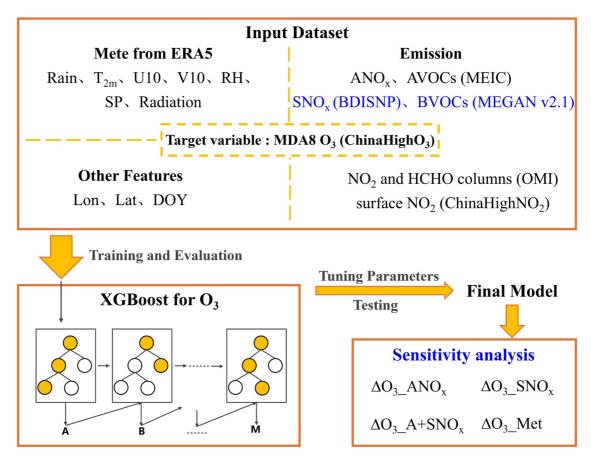


Figure 1. Flow diagram of quantifying the contribution of SNO<sub>x</sub> changes to surface MDA8 O<sub>3</sub> concentrations using the XGBoost model.

emissions in 2015, denoted as NO<sub>2</sub>VCD\_2015 and NO<sub>2</sub>\_2015, respectively. Thus, the differences between the observations in 2015 and these simulations can be attributed to changes caused by other factors, represented as NO<sub>2</sub>VCD\_others and NO<sub>2</sub>\_others. Since only the changes in NO<sub>x</sub> emissions are considered and all other factors are controlled at 2015 levels, we adjust ANO<sub>x</sub>, SNO<sub>x</sub>, and their combination to the levels of 2016–2019 for simulation, and the NO<sub>2</sub>VCD\_others (NO<sub>2</sub>\_others) are added into the simulation results to obtain the values of NO<sub>2</sub>VCD\_ANO<sub>x</sub> (NO<sub>2</sub>\_ANO<sub>x</sub>), NO<sub>2</sub>VCD\_SNO<sub>x</sub> (NO<sub>2</sub>\_SNO<sub>x</sub>), and NO<sub>2</sub>VCD\_A + SNO<sub>x</sub> (NO<sub>2</sub>\_A + SNO<sub>x</sub>) shown in Table 1. Additionally, the  $\Delta$ O<sub>3</sub>\_Met experiment adjusts meteorological conditions to 2016–2019 levels while keeping NO<sub>x</sub> emissions, NO<sub>2</sub> levels, and other factors at the year 2015. The difference between this experiment and O<sub>3</sub>\_2015 shows the O<sub>3</sub> variations due to the change in meteorological factors from 2016 to 2019 relative to 2015.

**Table 1** Descriptions of the XGBoost Simulation Experiments for  $O_3$  Response

| Simulation                     | $ANO_x$   | $SNO_x$   | $\mathrm{NO}_2\mathrm{VCD}$ | $NO_2$              | Met       |  |  |
|--------------------------------|-----------|-----------|-----------------------------|---------------------|-----------|--|--|
| O <sub>3</sub> _2015           | 2015      | 2015      | 2015                        | 2015                | 2015      |  |  |
| $\Delta O_3$ ANO <sub>x</sub>  | 2016–2019 | 2015      | $NO_2VCD\_ANO_x$            | $NO_{2-}$ $ANO_{x}$ | 2015      |  |  |
| $\Delta O_3$ _SNO <sub>x</sub> | 2015      | 2016–2019 | $NO_2VCD\_SNO_x$            | $NO_{2-}SNO_{x}$    | 2015      |  |  |
| $\Delta O_3$ A + $SNO_x$       | 2016–2019 | 2016–2019 | $NO_2VCD\_A + SNO_x$        | $NO_{2-}A + SNO_x$  | 2015      |  |  |
| ΔO <sub>3</sub> _Met           | 2015      | 2015      | 2015                        | 2015                | 2016–2019 |  |  |

Note. The other variables remain unchanged and remain at the year 2015.

SHA ET AL. 6 of 19

**Table 2**Descriptions of the XGBoost Simulation Experiments for the Changes in NO<sub>2</sub> Level

| NO <sub>2</sub> VCD                  | $ANO_x$   | $SNO_x$   | Others            | $\mathrm{NO}_2$                    | $ANO_x$   | $SNO_x$   | Others                  |
|--------------------------------------|-----------|-----------|-------------------|------------------------------------|-----------|-----------|-------------------------|
| NO <sub>2</sub> VCD_2015             | 2015      | 2015      | _                 | NO <sub>2</sub> _2015              | 2015      | 2015      | _                       |
| $NO_2VCD\_ANO_x$                     | 2016–2019 | 2015      | $NO_2VCD\_others$ | NO <sub>2</sub> _ ANO <sub>x</sub> | 2016–2019 | 2015      | NO <sub>2</sub> _others |
| NO <sub>2</sub> VCD_SNO <sub>x</sub> | 2015      | 2016–2019 |                   | $NO_{2-}SNO_{x}$                   | 2015      | 2016–2019 |                         |
| $NO_2VCD\_A + SNO_x$                 | 2016–2019 | 2016–2019 |                   | $NO_{2-} A + SNO_x$                | 2016–2019 | 2016–2019 |                         |

### 2.3.3. CTM and Simulation Experiment Design

We use the UI-WRF-Chem model to investigate the contribution of SNO<sub>x</sub> to O<sub>3</sub> production and then validate the simulation performance of the XGBoost model. The  $0.625^{\circ} \times 0.5^{\circ}$  Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data provide the meteorological initial and boundary conditions. The 0.25° × 0.25° Global Land Data Assimilation System (GLDAS) data provide the initial and boundary conditions of soil properties (e.g., soil moisture and temperature), which have been shown to yield robust simulation performance (Bi et al., 2016; Zha et al., 2025). Details about the meteorological and chemical position data used in the UI-WRF-Chem and the improvements can be found in previous publications (Li, Wang, et al., 2024; Wang, Wang, et al., 2023). We conduct one domain simulation over China (67.5°-152.5°E,  $9.4^{\circ}-55.1^{\circ}$ N) at a horizontal resolution of 27 km, with a grid dimension of 231  $\times$  180 cells and 48 vertical levels from the surface to 50 hPa. Anthropogenic emissions are from the MEIC inventory. Biomass burning emissions are from the Fire INventory from NCAR (FINN, version 1.5, https://www.acom.ucar.edu/Data/fire/, last access: 1 December 2024). Biogenic emissions are calculated online using MEGAN v2.1. SNO<sub>x</sub> are simulated with the improvement of using the BDISNP scheme (as described above). The selected physical and chemical schemes refer to our previous research (Sha et al., 2024). To explore the contribution of SNO<sub>x</sub> on MDA8 O<sub>3</sub> concentrations, we conduct simulations for two scenarios in 2015 and 2019, that is, with SNO<sub>x</sub> enabled (SNO<sub>x</sub>) and with SNO<sub>x</sub> disabled (NoSNO<sub>x</sub>). The difference in MDA8 O<sub>3</sub> levels between these two scenarios quantifies the O<sub>3</sub> production driven specifically by SNO<sub>x</sub>. The descriptions of the sensitivity simulations are given in Table 3.

# 3. Results and Discussions

# 3.1. O<sub>3</sub> Pollution Trends

The implementation of emission reduction strategies has reversed the increasing trend of ANO $_x$  since 2011 (Figure S1 in Supporting Information S1). However, the observed warm-season MDA8  $O_3$  concentrations from CNEMC increased by 5.2  $\mu$ g m<sup>-3</sup> yr<sup>-1</sup> from 2014 to 2023, with a notable increase during 2014–2017, a moderate decline during 2018–2020, and a slight rebound during the three-year COVID-19 pandemic period (2021–2023) (Figure S2a in Supporting Information S1). Additionally, the proportion of sites exceeding the World Health Organization (WHO) air quality guideline (MDA8  $O_3$  of 100  $\mu$ g m<sup>-3</sup>) increases from 2% in 2014 to 72% in 2023, with hotspots mainly located in eastern China (Figure S2b in Supporting Information S1). Since the monitoring sites from CNEMC are predominantly located in urban areas, it is difficult to comprehensively analyze  $O_3$  pollution in suburban and rural regions, which cover a much larger area. Thus, we use the ChinaHighO $_3$  data set to evaluate the difference in  $O_3$  pollution between urban and rural areas. Taking the year 2015 as an example, the monthly average relative bias between the MDA8  $O_3$  concentrations retrieved from the ChinaHighO $_3$  data set and the CNEMC observations ranges from 6% to 25%, with larger deviations in warm seasons compared to cold

 Table 3

 Descriptions of the UI-WRF-Chem Simulation Experiments

| Simulation             | $SNO_x$  | $\mathrm{ANO}_{\mathrm{x}}$ | Others |
|------------------------|----------|-----------------------------|--------|
| SNO <sub>x</sub> _15   | 2015     | 2015                        | 2015   |
| NoSNO <sub>x</sub> _15 | Turn off | 2015                        | 2015   |
| SNO <sub>x</sub> _19   | 2019     | 2019                        | 2019   |
| NoSNO <sub>x</sub> _19 | Turn off | 2019                        | 2019   |

seasons (Figure S3 in Supporting Information S1). Overall, this data set exhibits high accuracy and provides reliable estimates of the monthly average MDA8 O<sub>3</sub> from 2013 to 2020, with R<sup>2</sup> of 0.93, RMSE of 9.42 μg m<sup>-3</sup>, MAE of 6.91 μg m<sup>-3</sup>, and mean relative error of 8.56% (Wei et al., 2022). This confirms the reliability of the ChinaHighO<sub>3</sub> data set in estimating O<sub>3</sub> concentrations and its capability to capture the long-term trends of O<sub>3</sub>. The key regions, that is, BTH, FWP, and YRD, having severe O<sub>3</sub> pollution are selected to analyze the difference in O<sub>3</sub> pollution between urban and rural areas from 2010 to 2023. It includes four stages: before the implementation of the National Action Plan (2010–2012, Phase I), the first stage of Air Pollution

SHA ET AL. 7 of 19

21698996, 2025, 21, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JD044623 by Tong Sha - Nanjing University Of Information Science & Tech , Wiley Online Library on [30/102025].

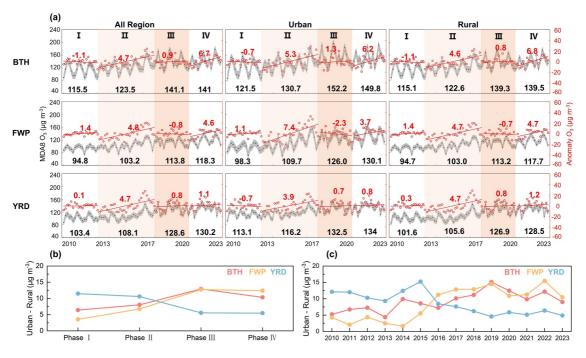


Figure 2. (a) Variation trends of monthly average MDA8  $O_3$  concentrations in the key regions during warm seasons from 2010 to 2023. The monthly averages of MDA8  $O_3$  in urban and rural areas of the three regions are black dots (left axis), and the anomalies are red circles (right axis). The monthly anomalies of MDA8  $O_3$  are defined as the difference between the monthly average of each individual month and the long-term monthly averages for the period 2010–2023. The gray shading represents the range of mean value  $\pm$  the 50% standard deviation across all sites for each month. The black numbers denote the warm-season MDA8  $O_3$  averaged in each phase. The solid red line represents the linear fitting curve. (b) Urban-rural differences in MDA8  $O_3$  concentrations averaged during warm seasons in different stages. (c) Annual variation of urban-rural differences in MDA8  $O_3$  concentrations averaged during warm seasons.

Prevention and Control Action Plan (2013–2017, Phase II), the second stage of Air Pollution Prevention and Control Action Plan (2018–2020, Phase III), and the period from 2021 to 2023 (Phase IV).

Figure 2a shows that before the Chinese government implemented strict emission control measures for O<sub>3</sub> pollution, warm-season MDA8 O<sub>3</sub> concentrations remain relatively stable in Phase I. During Phase II, the reduction in ANO<sub>x</sub> leads to O<sub>3</sub> increase, with the warm-season MDA8 O<sub>3</sub> increasing rate as high as 4.7–4.8 µg m<sup>-3</sup> yr<sup>-1</sup> across three key regions. Specifically, the increasing rate of MDA8  $O_3$  in urban areas of BTH is 5.3  $\mu$ g m<sup>-3</sup> yr<sup>-1</sup>, and FWP is  $7.4 \,\mathrm{\mu g} \,\mathrm{m}^{-3} \,\mathrm{yr}^{-1}$ , both higher than that in rural areas  $(4.6 \,\mathrm{\mu g} \,\mathrm{m}^{-3} \,\mathrm{yr}^{-1} \,\mathrm{for} \,\mathrm{BTH} \,\mathrm{and} \,4.7 \,\mathrm{\mu g} \,\mathrm{m}^{-3} \,\mathrm{yr}^{-1} \,\mathrm{for}$ FWP). In contrast, the YRD region shows the reverse trend, with rural MDA8 O<sub>3</sub> concentrations rising faster  $(4.7 \, \mu g \, m^{-3} \, yr^{-1})$  than urban areas  $(3.9 \, \mu g \, m^{-3} \, yr^{-1})$ . In Phase III, MDA8 O<sub>3</sub> concentrations in the YRD and BTH regions continue to rise, though at a relatively moderate rate, while the FWP region exhibits a declining trend (-0.8 μg m<sup>-3</sup> yr<sup>-1</sup>). This may be related to the fact that AVOCs have been gradually brought under control, achieving a 6% reduction from 2018 to 2020 in China (Figure S1 in Supporting Information S1). Meteorological conditions also exert a negative influence on O<sub>3</sub> formation during this phase (Liu et al., 2023). For the Phase IV, O<sub>3</sub> pollution shows a significant rebound, likely driven by the effects of the three-year COVID-19 pandemic starting in 2020, during which substantial decreases in NO<sub>x</sub> emissions from transportation increased oxidant levels (OH, HO<sub>2</sub>, and NO<sub>3</sub>), thereby enhancing the atmospheric oxidation capacity and accelerating O<sub>3</sub> production (Wang et al., 2021). Simultaneously, large-scale extreme heat events in central and eastern China in 2022 also offset the effectiveness of emission controls (Yan et al., 2024). In general, urban areas consistently exhibit higher warmseason MDA8 O3 concentrations compared to rural areas. Urban-rural disparities in MDA8 O3 are observed across all regions, with significant spatial heterogeneity (Figure 2b). The urban-rural gap shows an annual widening trend in the BTH and FWP while conversely narrowing in the YRD. Notably, rural MDA8 O3 in all regions is progressively approaching or even exceeding the Grade II ambient air quality standard ( $160 \,\mu g \, m^{-3}$ ). This indicates that O<sub>3</sub> pollution in agricultural areas requires more attention.

Since 2010, the O<sub>3</sub> pollution season (defined as MDA8 O<sub>3</sub> exceeding 160 μg m<sup>-3</sup>) has gradually extended from summer to transitional seasons (spring and autumn), accompanied with an increasing frequency of O<sub>3</sub> pollution

SHA ET AL. 8 of 19

21698996, 2025, 21, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JD044623 by Tong Sha

Figure 3. The season and frequency of  $O_3$  pollution events in urban and rural areas of (a) BTH, (b) FWP, and (c) Yangtze River Delta regions from 2010 to 2023. The left axis corresponds to the lines, where solid and dashed lines denote the first and last occurrences of  $O_3$  pollution, respectively. The right axis corresponds to the bars and triangular markers, which indicate the  $O_3$  pollution season and event frequency, respectively. Red represents rural (R), and blue represents urban (U).

events (Figure 3). This trend is consistent with the previous study (Li, Jacob, et al., 2021), which revealed that the abrupt decrease of NO<sub>x</sub> emissions over the North China Plain has not only led to increased O<sub>3</sub> concentrations in winter and spring but also extended the O<sub>3</sub> pollution events to span most of the year. The high frequency of springtime tropopause fold events promoting the transport of stratospheric O<sub>3</sub> into the troposphere may also lead to increased surface O<sub>3</sub> pollution (Lin et al., 2024; Luo et al., 2019). The turbulent entrainment by the deep convective boundary layer in the eastern plains is likely more effective at capturing descending lower-stratospheric air, contributing up to 16.7% to near-surface O<sub>3</sub> in eastern China during May–August 2019 via stratospheric intrusions (Meng et al., 2024). Additionally, the timing of O<sub>3</sub> pollution events is becoming more consistent between urban and rural areas in three major regions. Especially in the YRD region, the start and end dates of O<sub>3</sub> pollution in urban and rural areas have nearly coincided since 2019. Although rural areas have lower MDA8 O<sub>3</sub> concentrations and fewer pollution occurrences compared to urban areas, the areas affected by O<sub>3</sub> pollution are continuously expanding.

#### 3.2. Changes in NO<sub>x</sub> Emissions and NO<sub>2</sub> Columns

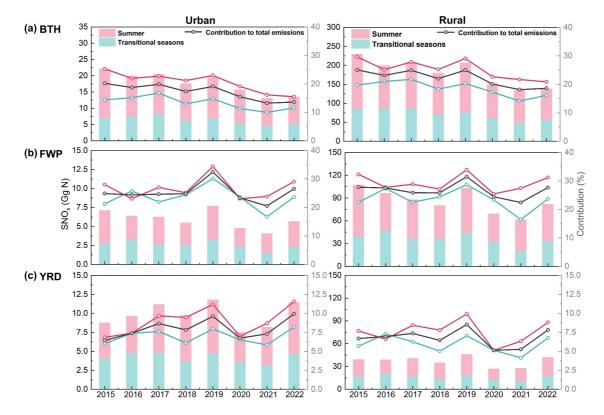
As one of the important precursors of  $O_3$ ,  $NO_x$  emissions changes can affect  $O_3$  formation. We compare the trends of  $NO_x$  emissions and  $NO_2$  columns observed from OMI in the three key regions from 2015 to 2022 (including two pollution control phases) and normalized to the year 2015 (Figure S4 in Supporting Information S1). The implementation of air pollution control strategies leads to a steady decline in  $ANO_x$ , with anthropogenic emissions over the BTH, FWP, and YRD regions decreased by 11%, 24%, and 11% in 2020 compared to 2015, respectively (MEIC inventory is only available up to 2020). However, the variation of  $NO_2$  columns shows a flattened decline trend during this period, and changes are -16% in BTH, -8% in FWP, and -8% in YRD. Although  $NO_2$  columns are influenced not only by emissions but also by the  $\cdot OH$  concentrations (Shah et al., 2023), their slow variation suggests potential contributions from other sources. A mismatch between the decreasing rate of anthropogenic emissions and  $NO_2$  columns has also been observed in regions such as the United States and Europe (Fortems-Cheiney et al., 2021; Jiang et al., 2022; Lu et al., 2015). This discrepancy has been attributed to changes in background emissions, particularly from soils and lightning sources (Silvern et al., 2019), a phenomenon further confirmed by increasing soil reactive nitrogen (Nr) emissions in rural China (Wang et al., 2024).

Figure 4 shows the simulated distribution of average warm-season SNO<sub>x</sub> and ANO<sub>x</sub> during 2015–2022. Note ANO<sub>x</sub> from MEIC for the year 2021–2022 are set at the 2020 levels. It can be seen that in eastern China, where cities are densely concentrated, although ANO<sub>x</sub> remain high, SNO<sub>x</sub> are also substantial due to the extensive farmlands surrounding these urban areas. Across the entire region of China, warm-season SNO<sub>x</sub> during this period account for a substantial proportion of the total NO<sub>x</sub> emissions, with the proportion ranging from 23% to 27% (Figure S5 in Supporting Information S1). SNO<sub>x</sub> are influenced by both soil properties, meteorological conditions, and fertilizer nitrogen applications. Despite a continued reduction in fertilizer application use across all provinces in China from 2015 to 2022 (Figure S6 in Supporting Information S1), the three key regions experienced significant warming during warm seasons: 2 m air temperatures increased at a rate of 0.1–0.2°C yr<sup>-1</sup> and soil temperatures increased at a rate of 0.02–0.3°C yr<sup>-1</sup> (Figure S7 in Supporting Information S1). This warming

SHA ET AL. 9 of 19

Figure 4. Distribution of the simulated average warm-season (a) SNO<sub>x</sub>, (b) ANO<sub>x</sub>, and (c) the contribution of SNO<sub>x</sub> to total NO<sub>x</sub> emissions in China during 2015–2022.

facilitates a shift of N cycling in terrestrial ecosystems from microbial immobilization to mineralization, nitrification, and denitrification, thereby promoting the production of  $SNO_x$  (Dai et al., 2020; Romer et al., 2018). Additionally, the intermittent soil pulses driven by soil dry-wet cycling further stimulate soil emissions to produce  $NO_x$  (Figure S8 in Supporting Information S1) (Dai et al., 2020; Oikawa et al., 2015; Wang et al., 2024), effectively offsetting  $SNO_x$  reductions resulting from the decreased fertilizer nitrogen use. As shown in Figure 5, in the years 2019 and 2022, the elevated temperatures and relatively dry soil conditions boost  $SNO_x$  across all three key regions. Overall, the decline in fertilizer nitrogen application, combined with rising temperatures and more frequent droughts, ultimately results in an increased proportion of  $SNO_x$  during both summer and transitional seasons in the FWP (from 28% to 31% in summer and from 21% to 24% in transitional seasons) and YRD (from 7% to 12% in summer and from 6% to 8% in transitional seasons) regions (Figures 5b and 5c). Although the proportion of  $SNO_x$  in the BTH shows a downward trend, it still accounts for more than 10% of total  $NO_x$  emissions (Figure 5a). These indicate that  $SNO_x$  play a significant role in total  $NO_x$  emissions, highlighting the urgent need to simultaneously control  $SNO_x$ .



**Figure 5.** SNO<sub>x</sub> (left axis) and their contribution to total NO<sub>x</sub> emissions (right axis) during summer (pink), transitional season (green), and warm seasons (gray) from 2015 to 2022 in the BTH, FWP, and Yangtze River Delta regions.

SHA ET AL. 10 of 19

We also study the changes in the sensitivity of  $O_3$  formation to its precursors during the same period (2015–2022). We select the satellite-based FNR and MDA8 O<sub>3</sub> concentrations to explore the changes in the O<sub>3</sub> formation regime. A dynamic FNR threshold that changes with regions and seasons is also applied. In the FWP region, the FNR corresponding to the maximum of MDA8 O<sub>3</sub> concentrations in summer is 3.3, with a transitional range of 2.6-4.0, which is higher than that in the BTH region (2.2, 3.7) and the YRD region (2.1, 3.4) (Figure S9 in Supporting Information S1). Moreover, the FNR thresholds in summer for all regions are higher than those in the transitional seasons. This can be attributed to the increased air temperatures and stronger solar radiation, which promote plant growth, leading to increased BVOCs emissions and enhancing the photochemical reactions of VOCs (Li, Jacob, et al., 2021; Tanvir et al., 2024). The coverage of mixed and NO<sub>x</sub>-limited regimes is expanding in the study regions (Figures S10–S13 in Supporting Information S1). During the transitional seasons, 23%, 7%, and 17% of the areas in the BTH, FWP, and YRD regions, respectively, transition from VOCs-limited to mixedlimited or NO<sub>x</sub>-limited regimes. These regime shifts are more pronounced during the summer months, reaching 53%, 26%, and 22% in the BTH, FWP, and YRD regions, respectively. This may be mainly attributed to the reduction of ANO<sub>x</sub> across all regions, while AVOCs remain relatively stable (Figure S1 in Supporting Information S1), thus making it easier for the FNR to shift toward mixed-limited and NO<sub>x</sub>-limited regimes when the NO<sub>x</sub> levels decrease. In addition, the increase in 2 m air temperature in summer (0.4–1.8°C) is more pronounced than that in the transitional seasons (0.1-1°C) during 2015-2022 (Tables S1 and S2 in Supporting Information S1), which may further promote the emission of BVOCs. The above suggests that the observed shifts in O<sub>3</sub> formation regimes, driven by the changing precursor levels and weather conditions, are a key factor in determining the characteristics of O<sub>3</sub> pollution.

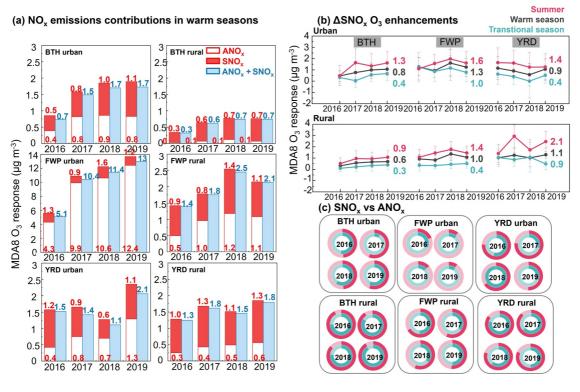
# 3.3. Impacts of SNO<sub>x</sub> on O<sub>3</sub> Increases

To further quantify the impact of SNO<sub>x</sub> on long-term O<sub>3</sub> trends, the XGBoost models are separately developed for rural and urban areas in different regions. Although there are some differences in the performance of the models trained for different regions, the testing data set consistently shows good performance with an average coefficient of determination (R<sup>2</sup>) of 0.93 (Figure S14 in Supporting Information S1). This indicates that these trained XGBoost models can accurately predict the spatiotemporal variability of O<sub>3</sub> concentrations in different regions. Figure 6a shows the contribution of changes in  $SNO_x$  and  $ANO_x$  from 2016 to 2019 to the increase in warm-season surface MDA8 O<sub>3</sub> in three key regions compared to the year 2015. These contributions are estimated by individually altering the meteorological conditions, SNO<sub>x</sub>, and ANO<sub>x</sub>. The changes in NO<sub>2</sub> columns and surface concentrations caused by the NO<sub>x</sub> emission variations from 2016 to 2019 are also taken into account, and other nonvariable conditions are maintained at the year 2015 when simulating O<sub>3</sub>. The meteorological factors dominated the MDA8  $O_3$  increases across all regions during 2016–2019, with elevating MDA8  $O_3$  by 2.6–22.2  $\mu$ g m<sup>-3</sup>, 5.9–19.0  $\mu$ g m<sup>-3</sup>, and 6.8–35.2 μg m<sup>-3</sup> in the BTH, FWP, and YRD regions, respectively (Table S3 in Supporting Information S1). Although the contributions of changes in NO<sub>x</sub> emissions to the increased MDA8 O<sub>3</sub> are much lower than meteorological factors  $(0.3-1.7 \,\mu g \, m^{-3} \, for$  the BTH,  $1.4-13.0 \,\mu g \, m^{-3}$  for the FWP, and  $1.1-2.1 \,\mu g \, m^{-3}$  for the YRD, respectively), it also has a positive contribution to the O<sub>3</sub> pollution. Due to the disparities of NO<sub>x</sub> emission levels and their variations, as well as the O<sub>3</sub> formation regime across different regions, there are notable regional discrepancies in the response of MDA8 O<sub>3</sub> to NO<sub>x</sub> emissions changes. For example, the promotion of O<sub>3</sub> enhancement by changes in NO<sub>x</sub> emissions in urban areas of the FWP is more obvious compared to other regions, reaching 5.1–13.0 μg m<sup>-3</sup>, which is comparable to the positive contribution from meteorological factors in this region. Additionally, in the urban areas of BTH and YRD regions, the reduction rates of ANO<sub>x</sub> between 2015 and 2019 (-6% for the BTH and -13% for the YRD) are lower than the change in SNO<sub>x</sub> (-12% for the BTH and 35% for the YRD). Therefore, the contribution of ANO<sub>x</sub> changes to MDA8 O<sub>3</sub> increase during this period is relatively lower than that of SNO<sub>x</sub> in urban areas, which is different from the situation in the FWP region.

We also evaluate the effect of changes in both  $ANO_x$  and  $SNO_x$  on  $O_3$  increases. The MDA8  $O_3$  increases from total  $NO_x$  emissions changes (blue bar) are lower than the sum of individual contributions from each  $NO_x$  source (red bar). This illustrates that the interaction between  $NO_x$  emissions from anthropogenic and soils can suppress  $O_3$  production from each source when either emission source changes. This nonlinear coupling effect results in an overall dampened sensitivity of  $O_3$  photochemistry to  $NO_x$  perturbations (Tan et al., 2023). In contrast, the interaction between BVOCs and AVOCs is synergistic, as they jointly enhance  $O_3$  formation by collectively increasing the availability of  $O_3$  precursors (Gao et al., 2022).

SHA ET AL. 11 of 19

21698996, 2025, 21, Downloaded from https://agupubs. onlinelibrary.wiley.com/doi/10.1029/2025ID044623 by Tong Sha - Nanjing University Of Information Science & Tech, Wiley Online Library on [30/102025]. See the Terms



**Figure 6.** (a) Contribution of  $NO_x$  emission changes ( $SNO_x$  and  $ANO_x$ ) to warm-season MDA8  $O_3$  concentrations in BTH, FWP, and Yangtze River Delta regions from 2016 to 2019 (relative to 2015). The bar chart shows the contributions of  $ANO_x$  (red hollow),  $SNO_x$  (red solid), and  $NO_x$  ( $SNO_x + ANO_x$ ) (blue) to the MDA8  $O_3$  increase, respectively. (b) Contribution of  $SNO_x$  changes to MDA8  $O_3$  increase (i.e.,  $\Delta SNO_x O_3$  enhancements) during warm seasons (gray), summer (pink), and transitional seasons (green) (unit:  $\mu$ g m<sup>-3</sup>). The error bars are the range of mean value  $\pm 50\%$  standard deviation across three regions for each season. The values in panels are the  $\Delta SNO_x O_3$  enhancements average in 2016–2019 during different seasons. (c) Relative contributions of  $SNO_x$  (dark shades) and  $ANO_x$  (light shades) to MDA8  $O_3$  during summer (pink) and transitional seasons (green) (unit: %).

As shown in Figure 6b, the increase in warm-season MDA8 O<sub>3</sub> caused by SNO<sub>x</sub> changes (i.e.,  $\Delta$ SNO<sub>x</sub> O<sub>3</sub> enhancements) has a gradual upward trend from 2015 to 2019 across all regions, except for the YRD region. For the BTH and FWP regions, despite higher SNO<sub>x</sub> levels in the rural areas compared to the urban areas, the O<sub>3</sub> enhancements attributed to SNO<sub>x</sub> changes in the rural areas are comparable or even smaller. Specifically, the range of warm-season  $\Delta SNO_x$   $O_3$  enhancements from 2016 to 2019 in rural areas is 0.3–0.7  $\mu g$  m<sup>-3</sup> over BTH and  $0.8-1.4 \mu g m^{-3}$  over FWP, while larger  $\Delta SNO_x O_3$  enhancements are found in the urban areas, with the range  $0.5-1.1~\mu g~m^{-3}$  for BTH and  $0.9-1.6~\mu g~m^{-3}$  for FWP. However, in the YRD region, the  $\Delta SNO_x~O_3$  enhancements in rural areas  $(1.0-1.3 \,\mu \text{g m}^{-3})$  are slightly greater than in urban areas  $(0.6-1.2 \,\mu \text{g m}^{-3})$ . These contrasting trends highlight the nonlinear response of O<sub>3</sub> to NO<sub>x</sub> emissions. During warm seasons from 2015 to 2019, 7% of rural areas in the YRD region transition to NO<sub>x</sub>-limited regimes (Table S4 in Supporting Information S1), and SNO<sub>x</sub> increase by 17% (Figure S4c in Supporting Information S1). The transformation of sensitive regimes and the increase in SNO<sub>x</sub> jointly promote O<sub>3</sub> formation. In contrast, urban areas primarily exhibit a transition from VOCs-limited to mixed-limited regimes. Although SNO<sub>x</sub> levels increase more significantly in urban areas, the response of regional O3 to SNOx is weaker than in rural areas, where O3 formation exhibits greater sensitivity to NO<sub>v</sub> emissions due to dominant NO<sub>v</sub>-limited and mixed-limited regimes. While regions like the BTH and FWP also experienced O<sub>3</sub> sensitivity regime shifts similar to the YRD, their urban areas retain strong VOCs-control characteristics, and thus a slight decrease in SNO<sub>x</sub> could lead to an increase in O<sub>3</sub>.

To further investigate the impact of  $SNO_x$  on the  $O_3$  pollution season, we conduct a seasonal analysis of the simulation results for each region, focusing on summer and transitional seasons. It is worth noting that, compared with 2015, the summer (transitional-season) MDA8  $O_3$  concentrations increase by 0.5–1.6 (0–0.7)  $\mu g$  m<sup>-3</sup> in BTH, 1.1–2.0 (0.3–1.3)  $\mu g$  m<sup>-3</sup> in FWP, and 1.2–2.9 (0–1.1)  $\mu g$  m<sup>-3</sup> in YRD regions during 2016–2019. From Figure 6b, the  $\Delta SNO_x$   $O_3$  enhancements exhibit significant seasonal variations. During the summer months, elevated air temperatures and enhanced precipitation lead to much higher  $SNO_x$  compared to transitional seasons.

SHA ET AL. 12 of 19

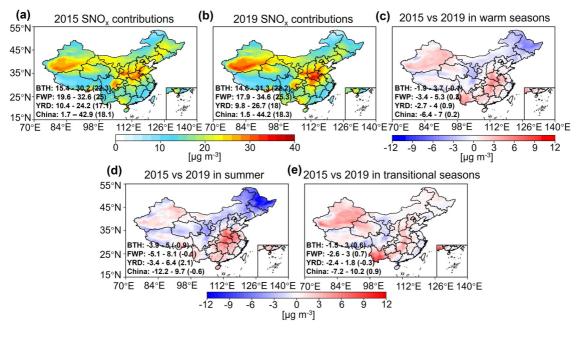


Figure 7. Simulated effects of SNO<sub>x</sub> on warm-season MDA8  $O_3$  concentrations in (a) 2015 and (b) 2019 by the UI-WRF-Chem model. The changes in the MDA8  $O_3$  response to SNO<sub>x</sub> between 2015 and 2019 during (c) warm seasons, (d) summer, and (e) transitional seasons. The numbers inserted in the figure represent the minimum and maximum values (average values) of the region.

In contrast, ANO<sub>x</sub> remain relatively stable across warm seasons without significant variations. Consequently, SNO<sub>x</sub> account for a larger proportion of NO<sub>x</sub> emissions in summer and contribute more to regional O<sub>3</sub> concentrations than in transitional seasons. Specifically, from 2016 to 2019, summer average  $\Delta SNO_x$   $O_3$  enhancements in urban (rural) areas are 1.3 (0.9)  $\mu$ g m<sup>-3</sup>, 1.6 (1.4)  $\mu$ g m<sup>-3</sup>, and 1.4 (2.1)  $\mu$ g m<sup>-3</sup> for the BTH, FWP, and YRD regions, respectively, all of which are greater than that in transitional seasons, that is, 0.4 (0.3)  $\mu$ g m<sup>-3</sup>, 1.0  $(0.4) \mu g \text{ m}^{-3}$ , and  $0.4 (0.9) \mu g \text{ m}^{-3}$  for the same regions. Except for the YRD, the  $\Delta SNO_x O_3$  enhancements in both summer and transitional seasons show an upward trend from 2016 to 2019 across the BTH and FWP regions. This indicates that the impact of SNO<sub>x</sub> on O<sub>3</sub> pollution is not limited to the summer seasons. A recent study also provided robust evidence that agricultural fertilization drives the NO<sub>2</sub> columns increases (Wang et al., 2024). With the continuous decline in ANO<sub>x</sub>, the role of fertilizer-induced SNO<sub>x</sub> in O<sub>3</sub> formation during spring seasons will become increasingly significant. More attention should be paid to soil emissions caused by fertilization during transitional seasons in the future. The relative contributions of ANO<sub>x</sub> and SNO<sub>x</sub> to the O<sub>3</sub> increase are also evaluated. As shown in Figure 6c, the contribution of SNO<sub>x</sub> to O<sub>3</sub> formation in rural areas can even exceed that of anthropogenic emissions, which  $SNO_x$  account for 84%-90%, 46%-65%, and 68%-81% of the total  $NO_x$ emissions-induced O<sub>3</sub> increases in the BTH, FWP, and YRD regions, respectively. Although the specific contributions vary by regions, SNO<sub>x</sub> are consistently shown to promote MDA8 O<sub>3</sub> increases.

# 3.4. CTM-Based Validation

The UI-WRF-Chem model is utilized to validate the simulation results of ML model, specifically assessing the impact of SNO<sub>x</sub> on the O<sub>3</sub> increase, and the traditional robust methods are applied for this validation. As shown in Figures 7a and 7b, the impacts of SNO<sub>x</sub> on warm-season MDA8 O<sub>3</sub> during 2015 and 2019 are both consistently positive, with the values of 1.7–42.9  $\mu$ g m<sup>-3</sup> and 1.5–44.2  $\mu$ g m<sup>-3</sup>, respectively, indicating that the CTM based on physicochemical processes also confirms that the presence of SNO<sub>x</sub> promotes O<sub>3</sub> formation. The contribution of SNO<sub>x</sub> to surface O<sub>3</sub> production varies significantly across regions. In 2015, the contributions of SNO<sub>x</sub> to MDA8 O<sub>3</sub> (i.e., SNO<sub>x</sub> contributions) averaged in urban areas of the BTH and FWP regions are 23.8  $\mu$ g m<sup>-3</sup> and 27.1  $\mu$ g m<sup>-3</sup>, respectively, whereas those in rural areas are 22.0  $\mu$ g m<sup>-3</sup> and 24.9  $\mu$ g m<sup>-3</sup>. By 2019, the SNO<sub>x</sub> contributions averaged in urban areas increase to 24.0  $\mu$ g m<sup>-3</sup> and 28.5  $\mu$ g m<sup>-3</sup>, and in rural areas, they change to 21.6  $\mu$ g m<sup>-3</sup> and 25.1  $\mu$ g m<sup>-3</sup>. Focusing on these 2 years, the contributions of SNO<sub>x</sub> to MDA8 O<sub>3</sub> in urban areas are consistently slightly higher than those in rural areas, while the YRD region shows an opposite trend, where the

SHA ET AL. 13 of 19

 $SNO_x$  contributions from urban and rural areas show no significant difference (Figure S15 in Supporting Information S1). The findings that BTH and FWP have a greater contribution of  $SNO_x$  to  $O_3$  in urban areas align with the ML model results. Moreover, the sensitivity of regional  $O_3$  formation to  $SNO_x$  shows distinct seasonal variations, with all regions exhibiting higher sensitivity in summer, which is also shown in the ML model results.

We also compared the changes in the response of MDA8  $O_3$  concentration to SNO $_x$  between 2015 and 2019. Figures 7c–7e shows that the SNO $_x$  contributions to  $O_3$  formation during warm seasons in most regions of eastern China are greater in 2019 than in 2015. Among them, the changes in warm-season MDA8  $O_3$  caused by SNO $_x$  are -3.4– $5.3~\mu g$  m $^{-3}$  (mean value:  $0.3~\mu g$  m $^{-3}$ ) in the FWP and -2.7– $4.0~\mu g$  m $^{-3}$  (mean value:  $0.9~\mu g$  m $^{-3}$ ) in YRD regions, while the response of warm-season MDA8  $O_3$  to SNO $_x$  is not significant in the BTH region (-1.9– $3.7~\mu g$  m $^{-3}$ ). Although the XGboost simulation results are slightly higher than the CTM results, with the changes in the warm-season MDA8  $O_3$  response to SNO $_x$  from 2015 to 2019 being -1.5– $10.0~\mu g$  m $^{-3}$  (mean value:  $0.7~\mu g$  m $^{-3}$ ) in BTH, -1.9– $9.2~\mu g$  m $^{-3}$  (mean value:  $1.0~\mu g$  m $^{-3}$ ) in FWP, and -2.2– $9.9~\mu g$  m $^{-3}$  (mean value:  $0.9~\mu g$  m $^{-3}$ ) in YRD regions (Figure S16 in Supporting Information S1), these ML models can still capture the promoting effect of warm-season SNO $_x$  on  $O_3$  increases. Additionally, the CTM results also indicate that the increase in the contributions of SNO $_x$  to  $O_3$  is more pronounced in summer than in the transitional seasons, further validating the accuracy of the conclusions from ML models regarding the seasonal differences in SNO $_x$  contributions. The above findings demonstrate the ability of the XGBoost model to capture regional and seasonal variations of SNO $_x$  contribution to  $O_3$  pollution. Therefore, the data-driven ML model proved to be a powerful tool for quickly diagnosing the drivers of  $O_3$  pollution.

# 4. Uncertainties

Uncertainties remain in our conclusion upon the integration of the classification of urban and rural areas, FNR threshold, NO<sub>x</sub> emissions, and the XGBoost and WRF-Chem model simulation. First, the nighttime light data used to distinguish between urban and rural areas are resampled to 0.1° using an averaging method. Resampling high-resolution nighttime light data to a lower resolution could result in the loss of certain information, and the grid cells at this scale may, to some extent, obscure the boundaries of suburbs as an independent and distinct category (Hutchins et al., 2017). Moreover, applying a uniform standard for urban-rural division (DN threshold of 25) across different regions with varying levels of economic development also introduces certain uncertainties. However, since this study focuses on the quantitative results for the entire region rather than the individual grid cells, the potential misclassification of a small number of boundary cells is unlikely to significantly impact the overall conclusions. Future studies could enhance classification accuracy by integrating multiple indicators (e.g., land cover types, population density) for a comprehensive urban-rural assessment (Liu et al., 2017). Second, we employ a statistical modeling approach to determine the thresholds that describe transitions between different chemical regimes. These thresholds may be influenced by biases in satellite retrieval algorithms, and discrepancies between surface MDA8 O3 concentrations and satellite-observed O3 precursor columns, which may also vary depending on the specific  $O_3$  metrics and fitting methods used. Third, there are uncertainties associated with NO<sub>x</sub> emissions from both soils and anthropogenic emissions (MEIC). Fourth, due to the limited data for training and feature selection, the XGBoost model may not fully capture O<sub>3</sub> variations driven by SNO<sub>8</sub> and other factors. Additionally, the discrepancy between the simulated MDA8 O3 and the observations may also affect the evaluation of the role of SNO<sub>x</sub> in O<sub>3</sub> mitigation strategies.

#### 5. Conclusions

This study quantifies the impact of  $ANO_x$  and  $SNO_x$  on the increasing trend of MDA8  $O_3$  in urban and rural areas of eastern China from 2015 to 2019, based on the XGBoost model and further verified by the UI-WRF-Chem model, focusing on the three key regions (BTH, FWP, and YRD) because of high levels of  $O_3$ . From 2010 to 2023, the occurrence of  $O_3$  pollution has gradually extended into transitional seasons (spring and autumn). Although rural areas have lower MDA8  $O_3$  and fewer pollution episodes compared to urban areas, the areas affected by  $O_3$  pollution are gradually expanding. The decline rate of  $ANO_x$  is faster than satellited-based  $NO_2$  columns, and this discrepancy indicates that as anthropogenic emissions decrease, natural sources, particularly the emissions from soils, exert a certain impact on the levels of  $NO_2$  columns. We thus estimate the proportion of  $SNO_x$  in total  $NO_x$  emissions and find that their proportions vary between 23% and 27% during warm seasons from 2015 to 2022.

SHA ET AL. 14 of 19

Results from the XGBoost model reveal that changes in SNO $_x$  lead to MDA8  $O_3$  increases during 2015–2019 across all regions, with significant spatial and seasonal heterogeneity. In the urban areas of BTH and FWP, despite a reduction in VOCs-limited regimes, these regions still exhibit strong VOCs control characteristics; thus, a slight reduction in SNO $_x$  leads to an increase in  $O_3$ . Specifically, compared with 2015, the urban MDA8  $O_3$  concentrations increase by 0.5–1.1  $\mu g$  m<sup>-3</sup> in BTH and 0.9–1.6  $\mu g$  m<sup>-3</sup> in FWP during warm seasons of 2016–2019. This increase exceeds those observed in the corresponding rural areas over the same period. However, in the YRD region, rural areas have primarily transitioned to a NO $_x$ -limited regimes; thus,  $\Delta$ SNO $_x$  03 enhancements (1.0–1.3  $\mu g$  m<sup>-3</sup>) caused by increased SNO $_x$  are slightly higher than in urban areas (0.6–1.2  $\mu g$  m<sup>-3</sup>). Furthermore, the response of  $O_3$  to SNO $_x$  changes is greater in summer than in the transitional seasons. Nevertheless, SNO $_x$  can still promote the  $O_3$  formation during transitional seasons, and the  $\Delta$ SNO $_x$  03 enhancements show an increasing trend from 2016 to 2019. Therefore, with the continued reduction of ANO $_x$ , the sensitivity of  $O_3$  formation to SNO $_x$  is expected to increase. We also employ the UI-WRF-Chem model to independently validate these conclusions derived from the XGBoost. The CTM results show that the ML has the ability to quantify the contributions of driving factors such as specific emissions to  $O_3$  pollution.

Our study emphasizes that despite lower  $SNO_x$  compared to anthropogenic emissions, they still pose a notable impact on the effectiveness of  $O_3$  pollution mitigation. As anthropogenic emissions decrease,  $O_3$  formation is likely to become more sensitive to  $SNO_x$  perturbations. Therefore, developing comprehensive  $O_3$  pollution control strategies must consider the changes of both  $SNO_x$  and  $ANO_x$  and their impact on the  $O_3$  formation, especially regional and seasonal differences in the sensitivity of  $O_3$  formation to  $SNO_x$ . Meanwhile, the contribution of fertilization-driven  $SNO_x$  to  $O_3$  formation in transitional seasons warrants more attention in future studies.

#### **Conflict of Interest**

The authors declare no conflicts of interest relevant to this study.

# **Data Availability Statement**

The surface O<sub>3</sub> concentrations are obtained from the China National Environmental Monitoring Center (CNEMC) at https://quotsoft.net/air/ (last access: 1 December 2024). The China High Air Pollutants (CHAP) data set developed by Wei et al. (2022) is available at https://zenodo.org/records/13342827 (last access: 1 December 2024). OMI Level-3 data can be downloaded from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets, last access: 1 December 2024). The anthropogenic emissions are available at the Multi-resolution Emission Inventory model for Climate and Air Pollution Research (MEIC) (http://meicmodel.org.cn, last access: 1 December 2024). The meteorological data are from the fifth generation European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5, https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=download, last access: 1 December 2024). The source code of the trained XGBoost model for predicting MDA8 O<sub>3</sub> concentrations and NO<sub>2</sub> levels could be found in the Zenodo: https://zenodo.org/records/17096553. WRF-Chem is an open-access model and available at https://www2.mmm.ucar.edu/wrf/users/download/get\_source.html (last access: 1 December 2024).

#### Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant 42205107) and the Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutions Open Fund Project (SHJKFJJYB-202409). Jun Wang's participation is made possible via the in-kind support from the University of Iowa.

#### References

Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. *Journal of Geophysical Research: Atmospheres*, 121(6), 2658–2678. https://doi.org/10.1002/2015JD024131

Cao, J., Qiu, X., Liu, Y., Yan, X., Gao, J., & Peng, L. (2022). Identifying the dominant driver of elevated surface ozone concentration in North China Plain during summertime 2012–2017. *Environmental Pollution*, 300, 118912. https://doi.org/10.1016/j.envpol.2022.118912

Chan, K. L., Wang, Z., Ding, A., Heue, K.-P., Shen, Y., Wang, J., et al. (2019). MAX-DOAS measurements of tropospheric NO<sub>2</sub> and HCHO in Nanjing and a comparison to ozone monitoring instrument observations. *Atmospheric Chemistry and Physics*, 19(15), 10051–10071. https://doi.org/10.5194/acp-19-10051-2019

Chen, N., Yang, Y., Wang, D., You, J., Gao, Y., Zhang, L., et al. (2024). Changing ozone sensitivity in Fujian province, China, during 2012–2021: Importance of controlling VOC emissions. *Environmental Pollution*, 359, 124757. https://doi.org/10.1016/j.envpol.2024.124757

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Paper presented at proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. https://doi.org/10.1145/2939672.2939785

Chen, Y., Wang, M., Yao, Y., Zeng, C., Zhang, W., Yan, H., et al. (2023). Research on the ozone formation sensitivity indicator of four urban agglomerations of China using ozone monitoring instrument (OMI) satellite data and ground-based measurements. *Science of the Total Environment*, 869, 161679. https://doi.org/10.1016/j.scitotenv.2023.161679

SHA ET AL. 15 of 19

, 2025, 21, Downloaded

- Cheng, N., Li, R., Xu, C., Chen, Z., Chen, D., Meng, F., et al. (2019). Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological influences and formation regimes. *Journal of Cleaner Production*, 235, 11–20. https://doi.org/10.1016/j.jclepro.2019.06.204
- Cheng, Y., Huang, X.-F., Peng, Y., Tang, M.-X., Zhu, B., Xia, S.-Y., & He, L.-Y. (2023). A novel machine learning method for evaluating the impact of emission sources on ozone formation. *Environmental Pollution*, 316, 120685. https://doi.org/10.1016/j.envpol.2022.120685
- Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., et al. (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26(9), 5267–5276. https://doi.org/10.1111/gcb.15211
- Ding, D., Xing, J., Wang, S., Dong, Z., Zhang, F., Liu, S., & Hao, J. (2021). Optimization of a NO<sub>x</sub> and VOC cooperative control strategy based on clean air benefits. *Environmental Science & Technology*, 56(2), 739–749. https://doi.org/10.1021/acs.est.1c04201
- Dobber, M. R., Dirksen, R. J., Levelt, P. F., van den Oord, G. H., Voors, R. H., Kleipool, Q., et al. (2006). Ozone monitoring instrument calibration. *IEEE Transactions on Geoscience and Remote Sensing*, 44(5), 1209–1238. https://doi.org/10.1109/TGRS.2006.869987
- Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., et al. (2010). Application of OMI observations to a space-based indicator of NO<sub>x</sub> and VOC controls on surface ozone formation. *Atmospheric Environment*, 44(18), 2213–2223. https://doi.org/10.1016/j.atmosenv.2010.03.010
- Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C., & Taneja, J. (2021). Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. *Remote Sensing*, 13(5), 922. https://doi.org/10.3390/rs13050922
- Fortems-Cheiney, A., Broquet, G., Pison, I., Saunois, M., Potier, E., Berchet, A., et al. (2021). Analysis of the anthropogenic and biogenic NO<sub>x</sub> emissions over 2008–2017: Assessment of the trends in the 30 most populated urban areas in Europe. *Geophysical Research Letters*, 48(11), e2020GL092206. https://doi.org/10.1029/2020GL092206
- Gao, Y., Yan, F., Ma, M., Ding, A., Liao, H., Wang, S., et al. (2022). Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Science of the Total Environment, 818, 151722. https://doi.org/10.1016/j.scitotenv.2021.151722
- Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., et al. (2024). Efficacy of China's clean air actions to tackle PM<sub>2.5</sub> pollution between 2013 and 2020. Nature Geoscience, 17(10), 987–994. https://doi.org/10.1038/s41561-024-01540-z
- Glissenaar, I., Boersma, K. F., Anglou, I., Rijsdijk, P., Verhoelst, T., Compernolle, S., et al. (2025). TROPOMI level 3 tropospheric NO<sub>2</sub> dataset with advanced uncertainty analysis from the ESA CCI+ ECV precursor project. *Earth System Science Data Discussions*, 2025, 1–36. https://doi.org/10.5194/essd-2024-616
- González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T., & Suleiman, R. (2015). Updated smithsonian astrophysical observatory ozone monitoring instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8(1), 19–32. https://doi.org/10.5194/amt-8-19-2015
- Hou, L., Dai, Q., Song, C., Liu, B., Guo, F., Dai, T., et al. (2022). Revealing drivers of haze pollution by explainable machine learning. Environmental Science and Technology Letters, 9(2), 112–119. https://doi.org/10.1021/acs.estlett.1c00865
- Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., & Liu, Y. (2017). Estimating PM<sub>2.5</sub> concentrations in the conterminous United States using the random forest approach. *Environmental Science & Technology*, 51(12), 6936–6944. https://doi.org/10.1021/acs.est. 7b01210
- Huang, L., Fang, J., Liao, J., Yarwood, G., Chen, H., Wang, Y., & Li, L. (2023). Insights into soil NO emissions and the contribution to surface ozone formation in China. Atmospheric Chemistry and Physics, 23(23), 14919–14932. https://doi.org/10.5194/acp-23-14919-2023
- Huang, L., Zhang, X., Emery, C., Mu, Q., Yarwood, G., Zhai, H., et al. (2025). Recommendations on benchmarks for numerical air quality model applications in China–Part 2: Ozone and uncertainty analysis. Atmospheric Chemistry and Physics, 25(7), 4233–4249. https://doi.org/10.5194/acp-25-4233-2025
- Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., et al. (2021). Recommendations on benchmarks for numerical air quality model applications in China–Part 1: PM<sub>2.5</sub> and chemical species. Atmospheric Chemistry and Physics, 21(4), 2725–2743. https://doi.org/10.5194/acp-21-2725-2021
- Huber, D. E., Steiner, A. L., & Kort, E. A. (2020). Daily cropland soil NOx emissions identified by TROPOMI and SMAP. Geophysical Research Letters, 47(22), e2020GL089949. https://doi.org/10.1029/2020GL089949
- Hutchins, M. G., Colby, J. D., Marland, G., & Marland, E. (2017). A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States. *Mitigation and Adaptation Strategies for Global Change*, 22(6), 947–972. https://doi.org/10.1007/s11027-016-9709-9
- Jiang, Z., Zhu, R., Miyazaki, K., McDonald, B. C., Klimont, Z., Zheng, B., et al. (2022). Decadal variabilities in tropospheric nitrogen oxides over United States, Europe, and China. *Journal of Geophysical Research: Atmospheres*, 127(3), e2021JD035872. https://doi.org/10.1029/ 2021JD035872
- Jin, X., Fiore, A., Boersma, K. F., Smedt, I. D., & Valin, L. (2020). Inferring changes in summertime surface Ozone–NO<sub>x</sub>–VOC chemistry over US urban areas from two decades of satellite and ground-based observations. *Environmental Science & Technology*, 54(11), 6518–6529. https://doi.org/10.1021/acs.est.9b07785
- Jin, X., & Holloway, T. (2015). Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(14), 7229–7246. https://doi.org/10.1002/2015jd023250
- Johnson, M. S., Philip, S., Meech, S., Kumar, R., Sorek-Hamer, M., Shiga, Y. P., & Jung, J. (2024). Insights into the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern hemisphere derived with the ozone monitoring instrument (OMI). Atmospheric Chemistry and Physics, 24(18), 10363–10384. https://doi.org/10.5194/acp-24-10363-2024
- Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., et al. (2017). The version 3 OMI NO<sub>2</sub> standard product. Atmospheric Measurement Techniques, 10(9), 3133–3149. https://doi.org/10.5194/amt-10-3133-2017
- Kuo, C.-P., & Fu, J. S. (2023). Ozone response modeling to NO<sub>x</sub> and VOC emissions: Examining machine learning models. Environment International, 176, 107969. https://doi.org/10.1016/j.envint.2023.107969
- Lee, H.-J., Chang, L.-S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., et al. (2022). Satellite-based diagnosis and numerical verification of ozone formation regimes over nine megacities in East Asia. *Remote Sensing*, 14(5), 1285. https://doi.org/10.3390/rs14051285
- Levelt, P. F., Van Den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., De Vries, J., et al. (2006). The ozone monitoring instrument. *IEEE Transactions on Geoscience and Remote Sensing*, 44(5), 1093–1101. https://doi.org/10.1109/TGRS.2006.872333
- Li, C., Wang, J., Zhang, H., Diner, D. J., Hasheminassab, S., & Janechek, N. (2024). Improvement of surface PM<sub>2.5</sub> diurnal variation simulations in East Africa for the MAIA satellite mission. ACS Es&t Air, 1(4), 223–233. https://doi.org/10.1021/acsestair.3c00008
- Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., et al. (2021). Ozone pollution in the North China plain spreading into the late-winter haze season. *Proceedings of the National Academy of Sciences*, 118(10), e2015797118. https://doi.org/10.1073/pnas.2015797118

SHA ET AL. 16 of 19

, 2025, 21, Down

- Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., et al. (2019). A two-pollutant strategy for improving ozone and particulate air quality in China. *Nature Geoscience*, 12(11), 906–910. https://doi.org/10.1038/s41561-019-0464-x
- Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., & Liao, H. (2020). Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmospheric Chemistry and Physics, 20(19), 11423–11433. https://doi.org/10.5194/acp-20-11423-2020
- Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., et al. (2017). Anthropogenic emission inventories in China: A review. *National Science Review*, 4(6), 834–866. https://doi.org/10.1093/nsr/nwx150
- Li, R., Xu, M., Li, M., Chen, Z., Gao, B., Zhao, N., & Yao, Q. (2021). Identifying the spatiotemporal variations of ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis. *Atmospheric Chemistry and Physics Discussions*, 2021, 1–28. https://doi.org/10.5194/acp-21-15631-2021
- Li, S., Gao, Y., Zhang, J., Hong, C., Zhang, S., Chen, D., et al. (2024). Mitigating climate change and ozone pollution will improve Chinese food security. *One Earth*, 8(2), 101166. https://doi.org/10.1016/j.oneear.2024.12.002
- Lin, Y., Tian, W., Xue, H., Luo, J., Zhang, J., Tian, H., & Liang, W. (2024). Global trends of tropopause folds in recent decades. Atmospheric and Oceanic Science Letters, 17(3), 100450. https://doi.org/10.1016/j.aosl.2023.100450
- Liu, F., Beirle, S., Zhang, Q., Van Der, A. R. J., Zheng, B., Tong, D., & He, K. (2017). NO<sub>x</sub> emission trends over Chinese cities estimated from OMI observations during 2005 to 2015. Atmospheric Chemistry and Physics, 17(15), 9261–9275. https://doi.org/10.5194/acp-17-9261-2017
- Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., & Bi, J. (2020). Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. *Environment International*, 142, 105823. https://doi.org/10.1016/j.envint.2020.105823
- Liu, Y., Geng, G., Cheng, J., Liu, Y., Xiao, Q., Liu, L., et al. (2023). Drivers of increasing ozone during the two phases of clean air actions in China 2013–2020. Environmental Science & Technology, 57(24), 8954–8964. https://doi.org/10.1021/acs.est.3c00054
- Liu, Y., Tang, Z., Abera, T., Zhang, X., Hakola, H., Pellikka, P., & Maeda, E. (2020). Spatio-temporal distribution and source partitioning of formaldehyde over Ethiopia and Kenya. Atmospheric Environment, 237, 117706. https://doi.org/10.1016/j.atmosenv.2020.117706
- Lu, X., Liu, Y., Su, J., Weng, X., Ansari, T., Zhang, Y., et al. (2025). Tropospheric ozone trends and attributions over east and Southeast Asia in 1995–2019: An integrated assessment using statistical methods, machine learning models, and multiple chemical transport models. Atmospheric Chemistry and Physics, 25(14), 7991–8028. https://doi.org/10.5194/acp-25-7991-2025
- Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., et al. (2021). The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. *Nature Communications*, 12(1), 5021. https://doi.org/10.1038/s41467-021-25147-9
- Lu, Z., Streets, D., De Foy, B., Lamsal, L., Duncan, B., & Xing, J. (2015). Emissions of nitrogen oxides from US urban areas: Estimation from ozone monitoring instrument retrievals for 2005–2014. *Atmospheric Chemistry and Physics*, 15(18), 10367–10383. https://doi.org/10.5194/acp.15.10367.2015
- Luo, J., Liang, W., Xu, P., Xue, H., Zhang, M., Shang, L., & Tian, H. (2019). Seasonal features and a case study of tropopause folds over the Tibetan Plateau. Advances in Meteorology, 2019(1), 4375123. https://doi.org/10.1155/2019/4375123
- Ma, M., Gao, Y., Ding, A., Su, H., Liao, H., Wang, S., et al. (2021). Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. *Environmental Science & Technology*, 56(1), 175–184. https://doi.org/10.1021/acs.est.1c06170
- Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., et al. (2019). Substantial ozone enhancement over the north China plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19(19), 12195–12207. https://doi.org/10.5194/acp-19-12195-2019
- Ma, X., Huang, J., Zhao, T., Liu, C., Zhao, K., Xing, J., & Xiao, W. (2020). Rapid increase in summer surface ozone over the North China plain during 2013–2019: A side effect of particulate matters reduction control? *Atmospheric Chemistry and Physics Discussions*, 2020, 1–30. https://doi.org/10.5194/acp-21-1-2021
- Meng, K., Zhao, T., Bai, Y., Wu, M., Cao, L., Hou, X., et al. (2024). Tracing the origins of stratospheric ozone intrusions: Direct vs. indirect pathways and their impacts on central and eastern China in spring–summer 2019. *Atmospheric Chemistry and Physics*, 24(22), 12623–12642. https://doi.org/10.5194/acp-24-12623-2024
- Ni, Y., Yang, Y., Wang, H., Li, H., Li, M., Wang, P., et al. (2024). Contrasting changes in ozone during 2019–2021 between eastern and the other regions of China attributed to anthropogenic emissions and meteorological conditions. *Science of the Total Environment*, 908, 168272. https://doi.org/10.1016/j.scitotenv.2023.168272
- Ning, Z., Gao, S., Gu, Z., Ni, C., Fang, F., Nie, Y., et al. (2024). Prediction and explanation for ozone variability using cross-stacked ensemble learning model. *Science of the Total Environment*, 935, 173382. https://doi.org/10.1016/j.scitotenv.2024.173382
- Oikawa, P., Ge, C., Wang, J., Eberwein, J., Liang, L., Allsman, L., et al. (2015). Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. *Nature Communications*, 6(1), 8753. https://doi.org/10.1038/ncomms9753
- Ren, J., Hao, Y., Simayi, M., Shi, Y., & Xie, S. (2021). Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014. Atmospheric Environment, 260, 118556. https://doi.org/10.1016/j.atmosenv.2021.118556
- Ren, J., & Xie, S. (2022). Diagnosing ozone-NO<sub>x</sub>-VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmospheric Chemistry and Physics Discussions, 2022, 1–22. https://doi.org/10.5194/acp-22-15035-2022
- Rijsdijk, P., Eskes, H., Dingemans, A., Boersma, K. F., Sekiya, T., Miyazaki, K., & Houweling, S. (2025). Quantifying uncertainties in satellite NO<sub>2</sub> superobservations for data assimilation and model evaluation. *Geoscientific Model Development*, 18(2), 483–509. https://doi.org/10.5194/gmd-18-483-2025
- Roelofs, G.-J., & Lelieveld, J. (1997). Model study of the influence of cross-tropopause O3 transports on tropospheric O<sub>3</sub> levels. *Tellus B: Chemical and Physical Meteorology*, 49(1), 38–55. https://doi.org/10.3402/tellusb.v49i1.15949
- Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A., et al. (2018). Effects of temperature-dependent NO<sub>x</sub> emissions on continental ozone production. *Atmospheric Chemistry and Physics*, 18(4), 2601–2614. https://doi.org/10.5194/acp-18-2601-2018 Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., et al. (2017). New insights into the column CH<sub>2</sub>O/NO<sub>2</sub>
- Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., et al. (2017). New insights into the column CH<sub>2</sub>O/NO<sub>2</sub> ratio as an indicator of near-surface ozone sensitivity. *Journal of Geophysical Research: Atmospheres*, 122(16), 8885–8907. https://doi.org/10.1002/2017JD026781
- Sha, T., Ma, X., Zhang, H., Janechek, N., Wang, Y., Wang, Y., et al. (2021). Impacts of soil NO $_{\rm x}$  emission on O $_{\rm 3}$  air quality in rural California. Environmental Science & Technology, 55(10), 7113–7122. https://doi.org/10.1021/acs.est.0c06834
- Sha, T., Yang, S., Chen, Q., Li, L., Ma, X., Zhang, Y.-L., et al. (2024). Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China. *Atmospheric Chemistry and Physics*, 24(14), 8441–8455. https://doi.org/10.5194/acp-24-8441-2024

SHA ET AL. 17 of 19

- Shah, V., Jacob, D. J., Dang, R., Lamsal, L. N., Strode, S. A., Steenrod, S. D., et al. (2023). Nitrogen oxides in the free troposphere: Implications for tropospheric oxidants and the interpretation of satellite NO<sub>2</sub> measurements. *Atmospheric Chemistry and Physics*, 23(2), 1227–1257. https://doi.org/10.5194/acp-23-1227-2023
- Shen, H., Sun, Z., Chen, Y., Russell, A. G., Hu, Y., Odman, M. T., et al. (2021). Novel method for ozone isopleth construction and diagnosis for the ozone control strategy of Chinese cities. *Environmental Science & Technology*, 55(23), 15625–15636. https://doi.org/10.1021/acs.est. 1c01567
- Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., et al. (2019). Using satellite observations of tropospheric NO<sub>2</sub> columns to infer long-term trends in US NO<sub>x</sub> emissions: The importance of accounting for the free tropospheric NO<sub>2</sub> background. *Atmospheric Chemistry and Physics*, 19(13), 8863–8878. https://doi.org/10.5194/acp-19-8863-2019
- Tan, W., Wang, H., Su, J., Sun, R., He, C., Lu, X., et al. (2023). Soil emissions of reactive nitrogen accelerate summertime surface ozone increases in the North China plain. *Environmental Science & Technology*, 57(34), 12782–12793. https://doi.org/10.1021/acs.est.3c01823
- Tanvir, A., Javed, Z., Wang, S., Zhou, B., Zhang, S., & Bai, X. (2024). Vertical characteristics of HCHO and NO<sub>2</sub> in suburban Shanghai: Understanding of ozone formation sensitivity via secondary HCHO. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad2d3c
- Tong, L., Liu, Y., Meng, Y., Dai, X., Huang, L., Luo, W., et al. (2023). Surface ozone changes during the COVID-19 outbreak in China: An insight into the pollution characteristics and formation regimes of ozone in the cold season. *Journal of Atmospheric Chemistry*, 80(1), 103–120. https://doi.org/10.1007/s10874-022-09443-2
- Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., et al. (2016). Why do models overestimate surface ozone in the Southeast United States? Atmospheric Chemistry and Physics, 16(21), 13561–13577. https://doi.org/10.5194/acp-16-13561-2016
- Vinken, G., Boersma, K., Maasakkers, J., Adon, M., & Martin, R. (2014). Worldwide biogenic soil NO<sub>x</sub> emissions inferred from OMI NO<sub>2</sub> observations. Atmospheric Chemistry and Physics, 14(18), 10363–10381. https://doi.org/10.5194/acp-14-10363-2014
- Wang, C., Lin, J., Niu, Y., Wang, W., Wen, J., Lv, L., et al. (2022). Impact of ozone exposure on heart rate variability and stress hormones: A randomized-crossover study. *Journal of Hazardous Materials*, 421, 126750. https://doi.org/10.1016/j.jhazmat.2021.126750
- Wang, H., Huang, C., Tao, W., Gao, Y., Wang, S., Jing, S., et al. (2022). Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China. *Npj Climate and Atmospheric Science*, 5(1), 24. https://doi.org/10.1038/s41612-022-00249-3
- Wang, L., Zhao, Y., Shi, J., Ma, J., Liu, X., Han, D., et al. (2023). Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning. *Environmental Pollution*, 318, 120798. https://doi.org/10.1016/j.envpol.2022.120798
- Wang, Q., Wang, X., Huang, R., Wu, J., Xiao, Y., Hu, M., et al. (2022). Regional transport of PM<sub>2.5</sub> and O<sub>3</sub> based on complex network method and chemical transport model in the Yangtze River Delta, China. *Journal of Geophysical Research: Atmospheres*, 127(5), e2021JD034807. https://doi.org/10.1029/2021JD034807
- Wang, R., Bei, N., Wu, J., Li, X., Liu, S., Yu, J., et al. (2022). Cropland nitrogen dioxide emissions and effects on the ozone pollution in the North China Plain. *Environmental Pollution*, 294, 118617. https://doi.org/10.1016/j.envpol.2021.118617
- Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., & Zhang, L. (2017). Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. *Science of the Total Environment*, 575, 1582–1596. https://doi.org/10.1016/j.scitotenv.
- Wang, X., Wang, H., & Wang, S. (2010). Ambient formaldehyde and its contributing factor to ozone and OH radical in a rural area. Atmospheric Environment, 44(17), 2074–2078. https://doi.org/10.1016/j.atmosenv.2010.03.023
- Wang, Y., Wang, J., Zhang, H., Janechek, N., Wang, Y., Zhou, M., et al. (2023). Impact of land use change on the urban-rural temperature disparity in Eastern China. Atmospheric Environment, 308, 119850. https://doi.org/10.1016/j.atmosenv.2023.119850
- Wang, Y., Wang, Y., Li, Q., Tan, Y., Li, M., Zhang, Y., et al. (2024). Soil emissions of reactive oxidized nitrogen reduce the effectiveness of anthropogenic source control in China. *Environmental Science & Technology*, 58(47), 21015–21024. https://doi.org/10.1021/acs.est.4c08526
   Wang, Y., Zhao, Y., Liu, Y., Jiang, Y., Zheng, B., Xing, J., et al. (2023). Sustained emission reductions have restrained the ozone pollution over China. *Nature Geoscience*, 16(11), 967–974. https://doi.org/10.1038/s41561-023-01284-2
- Wang, Y., Zhu, S., Ma, J., Shen, J., Wang, P., Wang, P., & Zhang, H. (2021). Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Science of the Total Environment, 768, 144796. https://doi.org/10.1016/j. scitotenv.2020.144796
- Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., et al. (2022). Full-coverage mapping and spatiotemporal variations of ground-level ozone (O<sub>3</sub>) pollution from 2013 to 2020 across China. *Remote Sensing of Environment*, 270, 112775. https://doi.org/10.1016/j.rse.2021.112775
- Xue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D., et al. (2014). Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes. Atmospheric Chemistry and Physics, 14(23), 13175–13188. https://doi.org/10.5194/acp-14-13175-2014
- Yan, D., Jin, Z., Zhou, Y., Li, M., Zhang, Z., Wang, T., et al. (2024). Anthropogenically and meteorologically modulated summertime ozone trends and their health implications since China's clean air actions. *Environmental Pollution*, 343, 123234. https://doi.org/10.1016/j.envpol. 2023.123234
- Yan, X., Ohara, T., & Akimoto, H. (2005). Statistical modeling of global soil NO<sub>x</sub> emissions. Global Biogeochemical Cycles, 19(3). https://doi. org/10.1029/2004GB002276
- Yang, Y., Zhou, Y., Wang, H., Li, M., Li, H., Wang, P., et al. (2024). Meteorological characteristics of extreme ozone pollution events in China and their future predictions. Atmospheric Chemistry and Physics, 24(2), 1177–1191. https://doi.org/10.5194/acp-24-1177-2024
- Yao, T., Lu, S., Wang, Y., Li, X., Ye, H., Duan, Y., et al. (2024). Revealing the drivers of surface ozone pollution by explainable machine learning and satellite observations in Hangzhou Bay, China. *Journal of Cleaner Production*, 440, 140938. https://doi.org/10.1016/j.jclepro.2024.140938
- Yin, H., Sun, Y., Notholt, J., Palm, M., Ye, C., & Liu, C. (2022). Quantifying the drivers of surface ozone anomalies in the urban areas over the Oinghai-Tibet Plateau. *Atmospheric Chemistry and Physics*, 22(21), 14401–14419. https://doi.org/10.5194/acp-22-14401-2022
- Yuan, Q., Qi, B., Hu, D., Wang, J., Zhang, J., Yang, H., et al. (2021). Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Science of the Total Environment, 751, 141820. https://doi.org/10.1016/j.scitotenv.
- Zha, X., Jia, S., Han, Y., Zhu, W., & Lv, A. (2025). Enhancing soil moisture prediction in drought-prone agricultural regions using remote sensing and machine learning approaches. *Remote Sensing*, 17(2), 181. https://doi.org/10.3390/rs17020181
- Zhang, L., Wang, L., Ji, D., Xia, Z., Nan, P., Zhang, J., et al. (2024). Explainable ensemble machine learning revealing the effect of meteorology and sources on ozone formation in megacity Hangzhou, China. Science of the Total Environment, 922, 171295. https://doi.org/10.1016/j.scitotenv.2024.171295
- Zhang, X., Xu, W., Zhang, G., Lin, W., Zhao, H., Ren, S., et al. (2022). Discrepancies in ozone levels and temporal variations between urban and rural North China plain: Possible implications for agricultural impact assessment across China. *Elem Sci Anth*, 10(1), 00019. https://doi.org/10.1525/elementa.2022.00019

SHA ET AL. 18 of 19

- Zhang, Y., Shi, M., Chen, J., Fu, S., & Wang, H. (2023). Spatiotemporal variations of NO<sub>2</sub> and its driving factors in the coastal ports of China. Science of the Total Environment, 871, 162041. https://doi.org/10.1016/j.scitotenv.2023.162041
- Zhang, Y., Yu, S., Chen, X., Li, Z., Li, M., Song, Z., et al. (2022). Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. *Environmental Chemistry Letters*, 20(3), 1577–1588. https://doi.org/10.1007/s10311-022-01421-0
- Zhu, J.-J., Yang, M., & Ren, Z. J. (2023). Machine learning in environmental research: Common pitfalls and best practices. *Environmental Science & Technology*, 57(46), 17671–17689. https://doi.org/10.1021/acs.est.3c00026
- Zhu, L., Jacob, D. J., Mickley, L. J., Marais, E. A., Cohan, D. S., Yoshida, Y., et al. (2014). Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns. *Environmental Research Letters*, 9(11), 114004. https://doi.org/10.1088/1748-9326/9/11/114004

SHA ET AL. 19 of 19