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Abstract Surface ozone (O3) pollution is a critical environmental challenge, but existing research
predominantly focuses on its summer peaks. Our analysis shows that high‐O3 episodes now expand into spring
and autumn in China, with warm‐season (April–September) maximum daily average 8‐hr (MDA8) O3
concentrations rising at 5.2 μg m− 3 yr− 1 during 2014–2023. Current O3 mitigation focuses on anthropogenic
NOx emissions (ANOx) while neglecting the contribution of soil NOx emissions (SNOx) to tropospheric O3
formation. Here, we developed an innovative framework combining the machine learning model (XGBoost)
with the Unified Inputs for WRF‐Chem (UI‐WRF‐Chem) to quantify the impacts of ANOx and SNOx on O3
increases during 2015–2019. Results show that although warm‐season SNOx constitute only 23%–27% of total
NOx emissions in China (2015–2022), they generally drive O3 increases, exhibiting distinct regional and
seasonal heterogeneities. Compared to urban areas, the O3 formation regimes in rural areas of the Yangtze River
Delta region predominantly shift to NOx‐limited, making O3 highly sensitive to SNOx. SNOx changes lead to
warm‐season MDA8 O3 increases of 1.0–1.3 μg m

− 3 during 2016–2019 relative to 2015. Although similar
regime shifts have occurred, rural areas in the Beijing‐Tianjin‐Hebei and Fenwei Plain regions still retain strong
VOCs‐limited characteristics; thus, SNOx perturbation impacts on O3 are smaller. Although summer SNOx are
higher, their contribution to O3 increases in transitional seasons (April, May, and September) shows an upward
trend, suggesting more attention should be paid to fertilization‐driven SNOx. Our study highlights that future O3
control strategies should account for SNOx and their regional and seasonal differences.

Plain Language Summary Surface ozone (O3) pollution in China is no longer confined to summer.
Our study reveals that high‐O3 episodes have extended into spring and autumn, with concentrations increasing
significantly each year. While strategies to reduce anthropogenic NOx emissions (ANOx) remain crucial for O3
mitigation, our study highlights the underappreciated role of soil NOx emissions (SNOx), which constitute
23%–27% of total NOx during warm seasons (April–September) in China. In this study, we employed an
innovative approach combining machine learning and a numerical model to assess the impacts of ANOx and
SNOx on warm‐season O3 increases from 2015 to 2019. Our simulations suggest that SNOx can exacerbate O3
pollution across China, and its impact varies by region and season. Notably, fertilization‐driven SNOx
contribute to rising O3 levels, even though soil emission levels are lower than in summer. As China successfully
reduces industrial and vehicle emissions, O3 formation is likely to becomemore sensitive to SNOx. Our findings
highlight the importance for policymakers to develop tailored, season‐specific strategies for controlling soil
emissions to effectively mitigate O3 pollution.

1. Introduction
Surface ozone (O3) is an emerging air pollution problem in China. Long‐term exposure to O3 pollution can pose a
considerable threat to human health and exert substantial impacts on terrestrial ecosystems, agricultural yields,
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and climate change (Li, Gao, et al., 2024; Wang, Lin, et al., 2022; Zhang, Xu, et al., 2022). Tropospheric O3
primarily generates from photochemical reactions of nitrogen oxides (NOx = NO + NO2) and volatile organic
compounds (VOCs) (Roelofs & Lelieveld, 1997; Wang et al., 2017). Since 2013, the Chinese government has
implemented a series of air pollution control measures that have effectively reduced anthropogenic NOx (ANOx)
and particulate matter emissions, leading to PM2.5 pollution mitigation (Li et al., 2019a, 2019b), but the surface
O3 concentrations still increased over the past decade (Liu et al., 2023). Many studies attribute the O3 increase to
the changes in meteorological conditions, precursor emissions, and climate change (Ni et al., 2024; Yang
et al., 2024; Yao et al., 2024), specifically reductions in anthropogenic emissions and weakening of aerosol
radiative effects (Li et al., 2020; Ma et al., 2020; Wang, Huang, et al., 2022).

There is a nonlinear relationship between photochemically generated O3 and its precursors, including NOx and
VOCs (Hou et al., 2022; Jiang et al., 2022). These precursors are emitted from anthropogenic sources (e.g., fuel
combustion from power plants and industry, transportation, and residential) and natural sources (e.g., soils,
biomass burning, and lightning) (Ding et al., 2021; Huber et al., 2020; Lu et al., 2021). A recent study found that
continuous decreases in ANOx have effectively reduced tropospheric NO2 vertical column densities (NO2 col-
umns) in urban areas of China during summer 2011–2023, while NO2 columns in rural areas showed slower
changes and even displayed a stabilized or slight increase in some natural areas (Wang et al., 2024). This
discrepancy suggests that the NO2 budget in rural areas may be more influenced by natural sources. NOx
emissions from soils, accounting for 12%–20% of global NOx emissions (Vinken et al., 2014; Yan et al., 2005),
are dynamically controlled by diverse factors, such as meteorological factors, soil temperature and moisture,
available nitrogen content in soils, and agricultural practices. Despite the influences from natural nitrogen pool
and agricultural fertilizer input, which are to some extent human‐controlled, soil NOx emissions (SNOx) are
conventionally considered as a natural source and overlooked in the current air pollution control strategies.

Chemical transport models (CTMs), such as WRF‐Chem, WRF‐CMAQ, and GEOS‐Chem, have become
increasingly popular in addressing O3‐related issues in China (Zhang et al., 2023), providing insights into un-
derstanding the role of local emissions and regional transport (Wang, Wang, et al., 2022; Zhang, Yu, et al., 2022),
contributions of specific emission sources (Liu, Ma, et al., 2020), and policy effectiveness (Liu et al., 2023). By
using CTMs, previous studies found that SNOx in agricultural areas of China can increase summer O3 concen-
trations by 5%–32% (Sha et al., 2024; Wang, Bei, et al., 2022; Wang, et al., 2024). However, previous CTM
studies mainly focus on the impact of SNOx on summer O3 pollution in individual months (typically from June to
August), with limited attention paid to the specific contribution of SNOX to long‐term O3 variations. Since CTMs
rely on simplifications of complex chemical mechanisms and physical processes, they are subject to uncertainties
in parameterization schemes as well as inaccuracies in input data (e.g., meteorological and emission data), making
it challenging to reproduce long‐term trends and short‐term variations in O3 across China, particularly near the
surface (Lu et al., 2025). This leads to uncertainties in the attribution of O3 trends based on CTMs (Huang
et al., 2021, 2025).

Compared with CTMs, machine learning (ML) methods, such as random forest, extreme gradient boosting, and
light gradient boosting, have the advantages of computational efficiency. These approaches only require certain
key predictors (e.g., meteorological variables and precursor emissions, etc.) to establish statistical models for O3
concentrations (Hou et al., 2022; Zhu et al., 2023). Moreover, they are more proficient and efficient in dealing
with nonlinear problems and thus have been widely applied to predict O3 levels (Kuo & Fu, 2023; Ning
et al., 2024). However, most ML methods are fundamentally black‐box models, with inherent drawbacks of
limited interpretability and lack of physicochemical mechanisms (Hou et al., 2022). The recently developed
Shapley Additive Explanations (SHAP) technique provides a framework for quantifying the importance and
interactions of multidimensional features, thereby solving some of the black‐box limitations in ML. Although
many studies have used the SHAP method to reveal the driving factors of particulate matter and O3 pollution
(Cheng et al., 2023; Zhang et al., 2024), it is worth noting that, unlike CTMs, the SHAP‐based ML approach still
cannot quantify the specific contributions of driving factors to O3 formation, but only provides a ranking of the
importance of influencing factors. Furthermore, previous studies typically considered natural emissions to be
constant or excluded when training ML models to predict O3 levels (Ning et al., 2024; Wang, Zhao, et al., 2023;
Yin et al., 2022). However, natural emissions such as SNOx and BVOCs strongly depend on the meteorological
conditions, which can lead ML models to overemphasize the importance of other factors affecting O3.
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With the decline in anthropogenic emissions, further understanding the interaction between soil and ANOx
emissions and their impact on O3 formation is crucial for developing more accurate mitigation strategies. In this
study, we first reveal the long‐term trends of O3 during warm seasons (April–September) from 2010 to 2023
based on the ChinaHighO3 data set (Wei et al., 2022), focusing on three key regions, that is, Beijing‐Tianjin‐
Hebei (BTH), Fenwei Plain (FWP), and Yangtze River Delta (YRD) region. We then explain the reasons for
the warm‐season O3 trend from the perspective of NOx emission changes. Since the period from 2015 to 2019 is
not affected by the COVID‐19 pandemic and is more conducive to studying the quantitative impact of NOx
emissions changes on the long‐term trend of O3, these years are selected as the study period. The XGBoost model
is chosen as the core framework for O3 trend attribution, that is, to quantify the contribution of ANOx and SNOx to
O3 increase under declining anthropogenic emissions, which incorporates the dynamical natural emissions out-
puts from the UI‐WRF‐Chemmodel. Moreover, the UI‐WRF‐Chemmodel is applied to further verify whether the
MLmethod could reliably quantify the response of O3 pollution to emission changes. This study aims to assess the
dynamic impacts of SNOx on warm‐season O3 formation and develop dynamic O3 mitigation strategies.

2. Materials and Methods
2.1. Observational Data of O3 and Its Precursors

The hourly surface O3 concentrations measurements at national monitoring sites for the period of 2014–2023 are
obtained from the China National Environmental Monitoring Center (CNEMC) and converted to the maximum
daily average 8‐hr (MDA8) O3 concentrations. Due to the lack of surface O3 site observations before 2013 and the
fact that CNEMC sites are mainly located in urban areas, while scarce in vast rural regions, we also incorporate
the China High Air Pollutants (CHAP) data set developed by Wei et al. (2022) (CHAP: https://zenodo.org/re-
cords/13342827, last access: 1 December 2024). This data set employs a space‐time extremely randomized tree
(STET) model to estimateMDA8 O3 concentrations (ChinaHighO3) based on solar radiation intensity and surface
temperature, combining ground‐based observations, remote sensing products, atmospheric reanalysis, and an
emission inventory. The spatial resolution is 1 × 1 km2 and covers both urban and rural regions in China.
Nighttime light data sets from DMSP/OLS (2010–2012) and NPP‐VIIRS (2013–2023) with a spatial resolution of
500 × 500 m2 (https://payneinstitute.mines.edu/eog/nighttime‐lights/, last access: 1 December 2024) are used to
dynamically distinguish the O3 concentrations in urban and rural areas, employing a digital number (DN)
threshold of 25 (Elvidge et al., 2021). This approach enables us to analyze the trends and distribution charac-
teristics of O3 in China from 2010 to 2023, covering the periods before and after the implementation of emission
reduction policies and the COVID‐19 pandemic.

The OzoneMonitoring Instrument (OMI) onboard NASA's Aura satellite was launched in 2004. It passes over the
local area at around 13:45 local time (LT), with an orbital scanning width of 2,600 km and a spatial resolution of
13 km × 24 km (Levelt et al., 2006), and provides a global coverage once a day until 2007 and every two days
thereafter (Dobber et al., 2006;Krotkov et al., 2017). The tropospheric columns ofNO2 from theOMI/AuraLevel‐3
NO2 product (OMNO2d 003) with a spatial resolution of 0.25° × 0.25° for the period of 2015–2022 are used
(https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary?keywords=NO2, last access: 1 December 2024).
The OMINO2 column product shows relatively high consistency with other satellite products. And the uncertainty
depends on incomplete knowledge of the surface albedo, cloud and aerosol interference, and a priori NO2 profile.
Some of these uncertainties can be eliminated by averaging, and some persist when averaging over multiple pixels
or over longer time periods (Glissenaar et al., 2025; Rijsdijk et al., 2025). Therefore, pixels with a cloud cover
fraction below 30% and a solar zenith angle (SZA) less than 85% are selected for analysis. The total vertical column
densities of HCHO are from the OMI/Aura Level‐3 HCHO product (OMHCHOd 003), with a spatial resolution of
0.1° × 0.1° (https://disc.gsfc.nasa.gov/datasets/OMHCHOd_003/summary?keywords=HCHO, last access: 1
December 2024). The uncertainties in the OMHCHOd product are effectively controlled within 30% in polluted
areas (González Abad et al., 2015; Li, Xu, et al., 2021; Rijsdijk et al., 2025). To ensure data quality and stability,
pixels with a main data quality flag of 0, a cloud fraction below 30%, and an SZA less than 70% are selected. Since
HCHO primarily exists in the troposphere, its total columns can be regarded as the tropospheric columns (Krotkov
et al., 2017; Zhu et al., 2014).
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2.2. Meteorology and Emission Data

The hourly meteorological data are from the fifth generation European Center for Medium‐Range Weather
Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5, horizontal resolution of 0.1° × 0.1°,
https://cds.climate.copernicus.eu/datasets/reanalysis‐era5‐land?tab=download). Among them, 2 m temperature
(T2m, unit: K), 2 m dewpoint temperature (Td2m, unit: K), surface net solar radiation (Radiation, unit: J m− 2),
10m u‐component and v‐component of wind (U10, V10, unit: m s− 1), surface pressure (Press, unit: Pa), and total
precipitation (Precp, unit: m) are used to train the XGBoost model.

The anthropogenic emissions of O3 precursors in China are from the Multi‐resolution Emission Inventory model
for Climate and Air Pollution Research (MEIC) (http://meicmodel.org.cn, last access: 1 December 2024) (Geng
et al., 2024; Li et al., 2017). The biogenic volatile organic compound (BVOCs) emissions calculated by the Model
of Emissions of Gases and Aerosols from Nature (MEGAN) version v2.1 are from (Ma et al., 2021), which
includes the hourly emission flux at a spatial resolution of 27 × 27 km2 in China. There is a total of 19 emission
species, including isoprene and terpenes derived from more than 100 emission compounds (Ma et al., 2019,
2021), and the BVOCs used to train the XGBoost model are the sum of all species. SNOx are calculated using the
Berkeley‐Dalhousie‐Iowa Soil NO Parameterization (BDISNP) coupled within the UI‐WRF‐Chem model.
BDISNP is based on the BDSNP scheme and has undergone a series of improvements to enhance its applicability
in the WRF‐Chemmodel. The updated scheme has been successfully applied to quantitatively study the impact of
SNOx on O3 pollution (Sha et al., 2021, 2024). Given the substantial impact of fertilizer nitrogen applications on
SNOx, and China has implemented a strategic shift since 2016 to reduce the utilization of nitrogen fertilizers and
increase the application of compound fertilizers (Wang et al., 2024), we consider the temporal variations of both
nitrogen fertilizers and compound fertilizers when calculating SNOx by following the method of (Huang
et al., 2023). Thus, unlike previous ML models for predicting O3, our XGBoost model incorporates dynamically
changing SNOx and BVOCs.

2.3. Methods

2.3.1. Determination of O3 Formation Regime

The most commonly used methods for identifying the O3‐NOx‐VOCs sensitivity include the observed photo-
chemical indicators (e.g., O3 production efficiency (OPE = ΔO3/ΔNOz) and H2O2/NOz (or H2O2/HNO3) ratio)
and observation‐based models (OBMs), which combine in situ field observations and chemical box models.
However, ground‐based measurements for photochemical indicators are often limited in temporal and spatial
extent. Also, the OBM analysis requires measuring NO at sub‐ppb levels and more than 50 different types of
VOCs with high accuracy, which is difficult to achieve (Wang et al., 2017; Xue et al., 2014). Satellite remote
sensing offers a valuable alternative way for investigating long‐term periods of the O3 formation regime on large
spatial scales. It can provide continuous global observations on a daily basis for two indicative species of O3
precursors, that is, NO2 for NOx (Chen et al., 2024; Travis et al., 2016) and formaldehyde (HCHO) for VOCs (Li,
Jacob, et al., 2021; Liu, Tang, et al., 2020). NOx can be approximated from the satellite observation of NO2
columns because of the short lifetime of NOx and high ratio of NO2/NOx in the planetary boundary layer (PBL)
(Jin & Holloway, 2015; Johnson et al., 2024). Meanwhile, HCHO is an intermediate of the oxidation reaction of
various VOCs in the atmosphere. The production of HCHO is approximately proportional to the summed rate of
reactions of VOC with·OH radicals (Wang et al., 2010), and HCHO is also mainly concentrated within the PBL
over polluted regions (Johnson et al., 2024). Therefore, HCHO can be used as a tracer for VOCs in the absence of
other VOC observations (Chan et al., 2019; Duncan et al., 2010).

The satellite‐based diagnostic method, that is, the ratio of HCHO to NO2 columns (the Formaldehyde‐to‐NO2
Ratio, FNR), has previously been proven to be highly consistent with the understanding of surface O3 chemistry
and is thus widely used as an effective indicator for determining the O3 formation regimes (Chen et al., 2023;
Cheng et al., 2019; Jin et al., 2020; Jin & Holloway, 2015; Wang, Zhao, et al., 2023). This method demonstrates
robust consistency with other approaches in China, such as observed photochemical indicators and OBMs‐based
analysis (Cao et al., 2022; Lee et al., 2022; Li, Jacob, et al., 2021; Ren & Xie, 2022; Shen et al., 2021; Tong
et al., 2023; Yuan et al., 2021). To investigate the long‐term variation of O3 formation regimes across different
regions of China, we choose a satellite‐based method to describe the surface O3 formation regimes. Given that the
overpass time of OMI satellite aligns with the peak period of O3 photochemical formation, it serves as an optimal
window for investigating O3 formation regimes (Ren et al., 2021; Zhang et al., 2023). Concurrently, MDA8 O3 is
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an indicator that characterizes the maximum daytime O3 concentrations, which can thereby reflect the period of
the strongest photochemical formation. Therefore, we integrate these two metrics, the FNR from OMI satellite
observations and MDA8 O3 concentrations from ChinaHighO3 data set, to explore the long‐term variations of O3
formation regimes over three key regions (BTH, FWP, and YRD) of China during 2015–2022 (Chen et al., 2024;
Wang, Zhao, et al., 2023).

The range of FNR values marking the transitional regime vary regionally and temporally (Schroeder et al., 2017).
We follow the approach ofWang, Zhao, et al. (2023) and use nonlinear statistical models to examine the empirical
relationship between O3 formation and its precursors. To determine the FNR thresholds, we divide the satellite‐
based daily FNR during warm seasons from 2015 to 2022 into 200 intervals across different regions, calculate the
95th percentile of observed surface MDA8 O3 concentrations for each FNR, and then evaluate their statistical
relationship using a fourth‐order polynomial model. Assuming the peak of the fitted curves represents the
transition from VOCs‐limited to NOx‐limited regimes, we define the transition regime as the FNR range cor-
responding to the top 20% of the MDA8 O3 95th percentile distribution. The zone with FNR values below the
minimum of this range is classified as the VOCs‐limited regime, while those above the maximum value of this
range are classified as the NOx‐limited regime. The zone with FNR values within this range is considered as
mixed‐limited regimes.

2.3.2. Machine Learning Model and Simulation Experiment Design

XGBoost is a supervised boosting algorithm that can effectively reduce the risk of overfitting, capture the
nonlinear relationships among predictor variables, and provide rapid and accurate solutions to science problems
(Chen & Guestrin, 2016). Compared with other bagging tree models, such as random forest, XGBoost can handle
more complex data with fewer computing resources. It also has higher interpretability and computational effi-
ciency than neural networks (Hu et al., 2017). Furthermore, it is less computationally expensive compared to the
traditional CTMs, making it suitable for studying the long‐term response of O3 pollution to its precursors’
emissions changes. To account for the spatiotemporal autocorrelation of O3 and its covariates, the spatiotemporal
information is also considered in the XGBoost model, including day of the year (DOY), longitude (Lon), and
latitude (Lat) over the study domain. Both precipitation and emissions are processed as daily totals, while all other
input variables are calculated as daily averages to maintain temporal consistency with the target variable, that is,
MDA8 O3. Bilinear interpolation and averaging are applied for upscaling and downscaling variables, respec-
tively, to ensure a consistent spatial resolution of 0.1° × 0.1° (Wang, Zhao, et al., 2023). Geographic locations
with missing or invalid data for any day are excluded from the training data set to ensure data integrity and model
reliability.

The XGBoost model for predicting MDA8 O3 in this study is trained using 80% of the data from 2015 to 2019.
The training data set included the following variables, that is, SNOx, BVOCs emissions, anthropogenic emissions
(including ANOx and AVOCs), OMI NO2 and HCHO columns, surface MDA8 O3 and NO2 concentrations from
the ChinaHighO3 and ChinaHighNO2 data sets of CHAP, 7 meteorological variables from ERA5, and spatio-
temporal variables (Lat, Lon, and DOY). The remaining 20% of the data is used to test the model (Figure 1).
Correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE) are used to
evaluate model performance.

Quantifying the contribution of emission changes to long‐term trends in O3 pollution based on CTM methods
requires high computing resources. The ML model provides an alternative approach, which is applied here. By
using the trainedXGBoost model, a series of sensitivity simulations are conducted to assess the impacts of changes
in SNOx and ANOx from 2015 to 2019 on warm‐season MDA8 O3 concentrations. The descriptions of the
sensitivity simulations are shown in Table 1. The O3_2015 experiment is the MDA8 O3 concentrations in 2015
predicted by the baseline XGBoost model. ΔO3_ANOx, ΔO3_SNOx, and ΔO3_A+ SNOx represent the predicted
O3 concentrations when ANOx, SNOx, and both ANOx and SNOx are adjusted to the levels of 2016–2019,
respectively. Comparing these three experiments results with O3_2015, we can quantify the contribution of O3
increases during this period caused by the change in NOx emissions from 2016 to 2019 relative to 2015. Notably,
due to the significant impacts of NOx emissions on the atmospheric NO2 budget, another XGBoost model is
conducted to predict variations in NO2 columns and surface concentrations resulting from NOx emission changes
(Table 2). The inputs of the model for predicting the changes in the NO2 level here are exclusively constrained to
ANOx and SNOx, and the baseline simulations predict the NO2 columns and surface concentrations caused by
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emissions in 2015, denoted as NO2VCD_2015 and NO2_2015, respectively. Thus, the differences between the
observations in 2015 and these simulations can be attributed to changes caused by other factors, represented as
NO2VCD_others and NO2_others. Since only the changes in NOx emissions are considered and all other factors
are controlled at 2015 levels, we adjust ANOx, SNOx, and their combination to the levels of 2016–2019 for
simulation, and the NO2VCD_others (NO2_others) are added into the simulation results to obtain the values of
NO2VCD_ANOx (NO2_ANOx), NO2VCD_SNOx (NO2_SNOx), and NO2VCD_A + SNOx (NO2_A + SNOx)
shown in Table 1. Additionally, the ΔO3_Met experiment adjusts meteorological conditions to 2016–2019 levels
while keeping NOx emissions, NO2 levels, and other factors at the year 2015. The difference between this
experiment and O3_2015 shows the O3 variations due to the change in meteorological factors from 2016 to 2019
relative to 2015.

Figure 1. Flow diagram of quantifying the contribution of SNOx changes to surface MDA8 O3 concentrations using the XGBoost model.

Table 1
Descriptions of the XGBoost Simulation Experiments for O3 Response

Simulation ANOx SNOx NO2 VCD NO2 Met

O3_2015 2015 2015 2015 2015 2015

ΔO3_ANOx 2016–2019 2015 NO2VCD_ANOx NO2_ ANOx 2015

ΔO3_SNOx 2015 2016–2019 NO2VCD_SNOx NO2_ SNOx 2015

ΔO3_A + SNOx 2016–2019 2016–2019 NO2VCD_A + SNOx NO2_ A + SNOx 2015

ΔO3_Met 2015 2015 2015 2015 2016–2019

Note. The other variables remain unchanged and remain at the year 2015.
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2.3.3. CTM and Simulation Experiment Design

We use the UI‐WRF‐Chem model to investigate the contribution of SNOx to O3 production and then validate the
simulation performance of the XGBoost model. The 0.625° × 0.5° Modern‐Era Retrospective analysis for
Research and Applications, Version 2 (MERRA‐2) reanalysis data provide the meteorological initial and
boundary conditions. The 0.25° × 0.25° Global Land Data Assimilation System (GLDAS) data provide the initial
and boundary conditions of soil properties (e.g., soil moisture and temperature), which have been shown to yield
robust simulation performance (Bi et al., 2016; Zha et al., 2025). Details about the meteorological and chemical
position data used in the UI‐WRF‐Chem and the improvements can be found in previous publications (Li, Wang,
et al., 2024; Wang, Wang, et al., 2023). We conduct one domain simulation over China (67.5°–152.5°E,
9.4°–55.1°N) at a horizontal resolution of 27 km, with a grid dimension of 231 × 180 cells and 48 vertical levels
from the surface to 50 hPa. Anthropogenic emissions are from the MEIC inventory. Biomass burning emissions
are from the Fire INventory from NCAR (FINN, version 1.5, https://www.acom.ucar.edu/Data/fire/, last access:
1 December 2024). Biogenic emissions are calculated online using MEGAN v2.1. SNOx are simulated with the
improvement of using the BDISNP scheme (as described above). The selected physical and chemical schemes
refer to our previous research (Sha et al., 2024). To explore the contribution of SNOx on MDA8 O3 concen-
trations, we conduct simulations for two scenarios in 2015 and 2019, that is, with SNOx enabled (SNOx) and with
SNOx disabled (NoSNOx). The difference in MDA8 O3 levels between these two scenarios quantifies the O3
production driven specifically by SNOx. The descriptions of the sensitivity simulations are given in Table 3.

3. Results and Discussions
3.1. O3 Pollution Trends

The implementation of emission reduction strategies has reversed the increasing trend of ANOx since 2011
(Figure S1 in Supporting Information S1). However, the observed warm‐season MDA8 O3 concentrations from
CNEMC increased by 5.2 μg m− 3 yr− 1 from 2014 to 2023, with a notable increase during 2014–2017, a moderate
decline during 2018–2020, and a slight rebound during the three‐year COVID‐19 pandemic period (2021–2023)
(Figure S2a in Supporting Information S1). Additionally, the proportion of sites exceeding the World Health
Organization (WHO) air quality guideline (MDA8 O3 of 100 μg m

− 3) increases from 2% in 2014 to 72% in 2023,
with hotspots mainly located in eastern China (Figure S2b in Supporting Information S1). Since the monitoring
sites from CNEMC are predominantly located in urban areas, it is difficult to comprehensively analyze O3
pollution in suburban and rural regions, which cover a much larger area. Thus, we use the ChinaHighO3 data set to
evaluate the difference in O3 pollution between urban and rural areas. Taking the year 2015 as an example, the
monthly average relative bias between the MDA8 O3 concentrations retrieved from the ChinaHighO3 data set and
the CNEMC observations ranges from 6% to 25%, with larger deviations in warm seasons compared to cold

seasons (Figure S3 in Supporting Information S1). Overall, this data set ex-
hibits high accuracy and provides reliable estimates of the monthly average
MDA8 O3 from 2013 to 2020, with R

2 of 0.93, RMSE of 9.42 μg m− 3, MAE
of 6.91 μg m− 3, and mean relative error of 8.56% (Wei et al., 2022). This
confirms the reliability of the ChinaHighO3 data set in estimating O3 con-
centrations and its capability to capture the long‐term trends of O3. The key
regions, that is, BTH, FWP, and YRD, having severe O3 pollution are selected
to analyze the difference in O3 pollution between urban and rural areas from
2010 to 2023. It includes four stages: before the implementation of the Na-
tional Action Plan (2010–2012, Phase I), the first stage of Air Pollution

Table 2
Descriptions of the XGBoost Simulation Experiments for the Changes in NO2 Level

NO2 VCD ANOx SNOx Others NO2 ANOx SNOx Others

NO2VCD_2015 2015 2015 — NO2_2015 2015 2015 —

NO2VCD_ANOx 2016–2019 2015 NO2VCD_others NO2_ ANOx 2016–2019 2015 NO2_others

NO2VCD_SNOx 2015 2016–2019 NO2_ SNOx 2015 2016–2019

NO2VCD_A + SNOx 2016–2019 2016–2019 NO2_ A + SNOx 2016–2019 2016–2019

Table 3
Descriptions of the UI‐WRF‐Chem Simulation Experiments

Simulation SNOx ANOx Others

SNOx_15 2015 2015 2015

NoSNOx_15 Turn off 2015 2015

SNOx_19 2019 2019 2019

NoSNOx_19 Turn off 2019 2019
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Prevention and Control Action Plan (2013–2017, Phase II), the second stage of Air Pollution Prevention and
Control Action Plan (2018–2020, Phase III), and the period from 2021 to 2023 (Phase IV).

Figure 2a shows that before the Chinese government implemented strict emission control measures for O3
pollution,warm‐seasonMDA8O3 concentrations remain relatively stable in Phase I. During Phase II, the reduction
in ANOx leads to O3 increase, with the warm‐season MDA8 O3 increasing rate as high as 4.7–4.8 μg m

− 3 yr− 1

across three key regions. Specifically, the increasing rate of MDA8 O3 in urban areas of BTH is 5.3 μg m
− 3 yr− 1,

and FWP is 7.4 μg m− 3 yr− 1, both higher than that in rural areas (4.6 μg m− 3 yr− 1 for BTH and 4.7 μg m− 3 yr− 1 for
FWP). In contrast, the YRD region shows the reverse trend, with rural MDA8 O3 concentrations rising faster
(4.7 μg m− 3 yr− 1) than urban areas (3.9 μg m− 3 yr− 1). In Phase III, MDA8O3 concentrations in the YRD and BTH
regions continue to rise, though at a relatively moderate rate, while the FWP region exhibits a declining trend
(− 0.8 μg m− 3 yr− 1). This may be related to the fact that AVOCs have been gradually brought under control,
achieving a 6% reduction from 2018 to 2020 in China (Figure S1 in Supporting Information S1). Meteorological
conditions also exert a negative influence on O3 formation during this phase (Liu et al., 2023). For the Phase IV, O3
pollution shows a significant rebound, likely driven by the effects of the three‐year COVID‐19 pandemic starting in
2020, duringwhich substantial decreases inNOx emissions from transportation increased oxidant levels (OH,HO2,
and NO3), thereby enhancing the atmospheric oxidation capacity and accelerating O3 production (Wang
et al., 2021). Simultaneously, large‐scale extreme heat events in central and eastern China in 2022 also offset the
effectiveness of emission controls (Yan et al., 2024). In general, urban areas consistently exhibit higher warm‐
season MDA8 O3 concentrations compared to rural areas. Urban‐rural disparities in MDA8 O3 are observed
across all regions,with significant spatial heterogeneity (Figure 2b). The urban‐rural gap shows an annualwidening
trend in the BTH and FWP while conversely narrowing in the YRD. Notably, rural MDA8 O3 in all regions is
progressively approaching or even exceeding theGrade II ambient air quality standard (160 μgm− 3). This indicates
that O3 pollution in agricultural areas requires more attention.

Since 2010, the O3 pollution season (defined as MDA8 O3 exceeding 160 μg m
− 3) has gradually extended from

summer to transitional seasons (spring and autumn), accompanied with an increasing frequency of O3 pollution

Figure 2. (a) Variation trends of monthly average MDA8 O3 concentrations in the key regions during warm seasons from 2010 to 2023. The monthly averages of MDA8
O3 in urban and rural areas of the three regions are black dots (left axis), and the anomalies are red circles (right axis). The monthly anomalies ofMDA8O3 are defined as
the difference between the monthly average of each individual month and the long‐term monthly averages for the period 2010–2023. The gray shading represents the
range of mean value ± the 50% standard deviation across all sites for each month. The black numbers denote the warm‐season MDA8 O3 averaged in each phase. The
solid red line represents the linear fitting curve. (b) Urban‐rural differences in MDA8 O3 concentrations averaged during warm seasons in different stages. (c) Annual
variation of urban‐rural differences in MDA8 O3 concentrations averaged during warm seasons.
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events (Figure 3). This trend is consistent with the previous study (Li, Jacob, et al., 2021), which revealed that the
abrupt decrease of NOx emissions over the North China Plain has not only led to increased O3 concentrations in
winter and spring but also extended the O3 pollution events to span most of the year. The high frequency of
springtime tropopause fold events promoting the transport of stratospheric O3 into the troposphere may also lead
to increased surface O3 pollution (Lin et al., 2024; Luo et al., 2019). The turbulent entrainment by the deep
convective boundary layer in the eastern plains is likely more effective at capturing descending lower‐
stratospheric air, contributing up to 16.7% to near‐surface O3 in eastern China during May–August 2019 via
stratospheric intrusions (Meng et al., 2024). Additionally, the timing of O3 pollution events is becoming more
consistent between urban and rural areas in three major regions. Especially in the YRD region, the start and end
dates of O3 pollution in urban and rural areas have nearly coincided since 2019. Although rural areas have lower
MDA8 O3 concentrations and fewer pollution occurrences compared to urban areas, the areas affected by O3
pollution are continuously expanding.

3.2. Changes in NOx Emissions and NO2 Columns

As one of the important precursors of O3, NOx emissions changes can affect O3 formation. We compare the trends
of NOx emissions and NO2 columns observed from OMI in the three key regions from 2015 to 2022 (including
two pollution control phases) and normalized to the year 2015 (Figure S4 in Supporting Information S1). The
implementation of air pollution control strategies leads to a steady decline in ANOx, with anthropogenic emis-
sions over the BTH, FWP, and YRD regions decreased by 11%, 24%, and 11% in 2020 compared to 2015,
respectively (MEIC inventory is only available up to 2020). However, the variation of NO2 columns shows a
flattened decline trend during this period, and changes are − 16% in BTH, − 8% in FWP, and − 8% in YRD.
Although NO2 columns are influenced not only by emissions but also by the ·OH concentrations (Shah
et al., 2023), their slow variation suggests potential contributions from other sources. A mismatch between the
decreasing rate of anthropogenic emissions and NO2 columns has also been observed in regions such as the
United States and Europe (Fortems‐Cheiney et al., 2021; Jiang et al., 2022; Lu et al., 2015). This discrepancy has
been attributed to changes in background emissions, particularly from soils and lightning sources (Silvern
et al., 2019), a phenomenon further confirmed by increasing soil reactive nitrogen (Nr) emissions in rural China
(Wang et al., 2024).

Figure 4 shows the simulated distribution of average warm‐season SNOx and ANOx during 2015–2022. Note
ANOx from MEIC for the year 2021–2022 are set at the 2020 levels. It can be seen that in eastern China, where
cities are densely concentrated, although ANOx remain high, SNOx are also substantial due to the extensive
farmlands surrounding these urban areas. Across the entire region of China, warm‐season SNOx during this period
account for a substantial proportion of the total NOx emissions, with the proportion ranging from 23% to 27%
(Figure S5 in Supporting Information S1). SNOx are influenced by both soil properties, meteorological condi-
tions, and fertilizer nitrogen applications. Despite a continued reduction in fertilizer application use across all
provinces in China from 2015 to 2022 (Figure S6 in Supporting Information S1), the three key regions experi-
enced significant warming during warm seasons: 2 m air temperatures increased at a rate of 0.1–0.2°C yr− 1 and
soil temperatures increased at a rate of 0.02–0.3°C yr− 1 (Figure S7 in Supporting Information S1). This warming

Figure 3. The season and frequency of O3 pollution events in urban and rural areas of (a) BTH, (b) FWP, and (c) Yangtze River Delta regions from 2010 to 2023. The left
axis corresponds to the lines, where solid and dashed lines denote the first and last occurrences of O3 pollution, respectively. The right axis corresponds to the bars and
triangular markers, which indicate the O3 pollution season and event frequency, respectively. Red represents rural (R), and blue represents urban (U).
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facilitates a shift of N cycling in terrestrial ecosystems from microbial immobilization to mineralization, nitri-
fication, and denitrification, thereby promoting the production of SNOx (Dai et al., 2020; Romer et al., 2018).
Additionally, the intermittent soil pulses driven by soil dry‐wet cycling further stimulate soil emissions to produce
NOx (Figure S8 in Supporting Information S1) (Dai et al., 2020; Oikawa et al., 2015; Wang et al., 2024),
effectively offsetting SNOx reductions resulting from the decreased fertilizer nitrogen use. As shown in Figure 5,
in the years 2019 and 2022, the elevated temperatures and relatively dry soil conditions boost SNOx across all
three key regions. Overall, the decline in fertilizer nitrogen application, combined with rising temperatures and
more frequent droughts, ultimately results in an increased proportion of SNOx during both summer and transi-
tional seasons in the FWP (from 28% to 31% in summer and from 21% to 24% in transitional seasons) and YRD
(from 7% to 12% in summer and from 6% to 8% in transitional seasons) regions (Figures 5b and 5c). Although the
proportion of SNOx in the BTH shows a downward trend, it still accounts for more than 10% of total NOx
emissions (Figure 5a). These indicate that SNOx play a significant role in total NOx emissions, highlighting the
urgent need to simultaneously control SNOx.

Figure 4. Distribution of the simulated average warm‐season (a) SNOx, (b) ANOx, and (c) the contribution of SNOx to total NOx emissions in China during 2015–2022.

Figure 5. SNOx (left axis) and their contribution to total NOx emissions (right axis) during summer (pink), transitional season (green), and warm seasons (gray) from
2015 to 2022 in the BTH, FWP, and Yangtze River Delta regions.
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We also study the changes in the sensitivity of O3 formation to its precursors during the same period (2015–2022).
We select the satellite‐based FNR and MDA8 O3 concentrations to explore the changes in the O3 formation
regime. A dynamic FNR threshold that changes with regions and seasons is also applied. In the FWP region, the
FNR corresponding to the maximum of MDA8 O3 concentrations in summer is 3.3, with a transitional range of
2.6–4.0, which is higher than that in the BTH region (2.2, 3.7) and the YRD region (2.1, 3.4) (Figure S9 in
Supporting Information S1). Moreover, the FNR thresholds in summer for all regions are higher than those in the
transitional seasons. This can be attributed to the increased air temperatures and stronger solar radiation, which
promote plant growth, leading to increased BVOCs emissions and enhancing the photochemical reactions of
VOCs (Li, Jacob, et al., 2021; Tanvir et al., 2024). The coverage of mixed and NOx‐limited regimes is expanding
in the study regions (Figures S10–S13 in Supporting Information S1). During the transitional seasons, 23%, 7%,
and 17% of the areas in the BTH, FWP, and YRD regions, respectively, transition from VOCs‐limited to mixed‐
limited or NOx‐limited regimes. These regime shifts are more pronounced during the summer months, reaching
53%, 26%, and 22% in the BTH, FWP, and YRD regions, respectively. This may be mainly attributed to the
reduction of ANOx across all regions, while AVOCs remain relatively stable (Figure S1 in Supporting Infor-
mation S1), thus making it easier for the FNR to shift toward mixed‐limited and NOx‐limited regimes when the
NOx levels decrease. In addition, the increase in 2 m air temperature in summer (0.4–1.8°C) is more pronounced
than that in the transitional seasons (0.1–1°C) during 2015–2022 (Tables S1 and S2 in Supporting Informa-
tion S1), which may further promote the emission of BVOCs. The above suggests that the observed shifts in O3
formation regimes, driven by the changing precursor levels and weather conditions, are a key factor in deter-
mining the characteristics of O3 pollution.

3.3. Impacts of SNOx on O3 Increases

To further quantify the impact of SNOx on long‐term O3 trends, the XGBoost models are separately developed for
rural and urban areas in different regions. Although there are some differences in the performance of the models
trained for different regions, the testing data set consistently shows good performance with an average coefficient
of determination (R2) of 0.93 (Figure S14 in Supporting Information S1). This indicates that these trainedXGBoost
models can accurately predict the spatiotemporal variability of O3 concentrations in different regions. Figure 6a
shows the contribution of changes in SNOx and ANOx from 2016 to 2019 to the increase in warm‐season surface
MDA8 O3 in three key regions compared to the year 2015. These contributions are estimated by individually
altering themeteorological conditions, SNOx, andANOx. The changes inNO2 columns and surface concentrations
caused by the NOx emission variations from 2016 to 2019 are also taken into account, and other nonvariable
conditions are maintained at the year 2015 when simulating O3. The meteorological factors dominated the MDA8
O3 increases across all regions during 2016–2019, with elevatingMDA8O3 by 2.6–22.2 μgm

− 3, 5.9–19.0 μgm− 3,
and 6.8–35.2 μg m− 3 in the BTH, FWP, and YRD regions, respectively (Table S3 in Supporting Information S1).
Although the contributions of changes in NOx emissions to the increased MDA8 O3 are much lower than mete-
orological factors (0.3–1.7 μg m− 3 for the BTH, 1.4–13.0 μg m− 3 for the FWP, and 1.1–2.1 μg m− 3 for the YRD,
respectively), it also has a positive contribution to the O3 pollution. Due to the disparities of NOx emission levels
and their variations, as well as the O3 formation regime across different regions, there are notable regional dis-
crepancies in the response ofMDA8O3 toNOx emissions changes. For example, the promotion ofO3 enhancement
by changes in NOx emissions in urban areas of the FWP is more obvious compared to other regions, reaching
5.1–13.0 μg m− 3, which is comparable to the positive contribution from meteorological factors in this region.
Additionally, in the urban areas of BTH and YRD regions, the reduction rates of ANOx between 2015 and 2019
(− 6% for the BTH and − 13% for the YRD) are lower than the change in SNOx (− 12% for the BTH and 35% for the
YRD). Therefore, the contribution of ANOx changes to MDA8 O3 increase during this period is relatively lower
than that of SNOx in urban areas, which is different from the situation in the FWP region.

We also evaluate the effect of changes in both ANOx and SNOx on O3 increases. The MDA8 O3 increases from
total NOx emissions changes (blue bar) are lower than the sum of individual contributions from each NOx source
(red bar). This illustrates that the interaction between NOx emissions from anthropogenic and soils can suppress
O3 production from each source when either emission source changes. This nonlinear coupling effect results in an
overall dampened sensitivity of O3 photochemistry to NOx perturbations (Tan et al., 2023). In contrast, the
interaction between BVOCs and AVOCs is synergistic, as they jointly enhance O3 formation by collectively
increasing the availability of O3 precursors (Gao et al., 2022).
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As shown in Figure 6b, the increase in warm‐season MDA8 O3 caused by SNOx changes (i.e., ΔSNOx O3 en-
hancements) has a gradual upward trend from 2015 to 2019 across all regions, except for the YRD region. For the
BTH and FWP regions, despite higher SNOx levels in the rural areas compared to the urban areas, the O3 en-
hancements attributed to SNOx changes in the rural areas are comparable or even smaller. Specifically, the range
of warm‐season ΔSNOx O3 enhancements from 2016 to 2019 in rural areas is 0.3–0.7 μg m

− 3 over BTH and
0.8–1.4 μg m− 3 over FWP, while larger ΔSNOx O3 enhancements are found in the urban areas, with the range
0.5–1.1 μg m− 3 for BTH and 0.9–1.6 μg m− 3 for FWP. However, in the YRD region, the ΔSNOx O3 enhance-
ments in rural areas (1.0–1.3 μg m− 3) are slightly greater than in urban areas (0.6–1.2 μg m− 3). These contrasting
trends highlight the nonlinear response of O3 to NOx emissions. During warm seasons from 2015 to 2019, 7% of
rural areas in the YRD region transition to NOx‐limited regimes (Table S4 in Supporting Information S1), and
SNOx increase by 17% (Figure S4c in Supporting Information S1). The transformation of sensitive regimes and
the increase in SNOx jointly promote O3 formation. In contrast, urban areas primarily exhibit a transition from
VOCs‐limited to mixed‐limited regimes. Although SNOx levels increase more significantly in urban areas, the
response of regional O3 to SNOx is weaker than in rural areas, where O3 formation exhibits greater sensitivity to
NOx emissions due to dominant NOx‐limited and mixed‐limited regimes. While regions like the BTH and FWP
also experienced O3 sensitivity regime shifts similar to the YRD, their urban areas retain strong VOCs‐control
characteristics, and thus a slight decrease in SNOx could lead to an increase in O3.

To further investigate the impact of SNOx on the O3 pollution season, we conduct a seasonal analysis of the
simulation results for each region, focusing on summer and transitional seasons. It is worth noting that, compared
with 2015, the summer (transitional‐season) MDA8 O3 concentrations increase by 0.5–1.6 (0–0.7) μg m

− 3 in
BTH, 1.1–2.0 (0.3–1.3) μg m− 3 in FWP, and 1.2–2.9 (0–1.1) μg m− 3 in YRD regions during 2016–2019. From
Figure 6b, the ΔSNOx O3 enhancements exhibit significant seasonal variations. During the summer months,
elevated air temperatures and enhanced precipitation lead to much higher SNOx compared to transitional seasons.

Figure 6. (a) Contribution of NOx emission changes (SNOx and ANOx) to warm‐season MDA8 O3 concentrations in BTH, FWP, and Yangtze River Delta regions from
2016 to 2019 (relative to 2015). The bar chart shows the contributions of ANOx (red hollow), SNOx (red solid), and NOx (SNOx + ANOx) (blue) to the MDA8 O3
increase, respectively. (b) Contribution of SNOx changes to MDA8 O3 increase (i.e., ΔSNOx O3 enhancements) during warm seasons (gray), summer (pink), and
transitional seasons (green) (unit: μg m− 3). The error bars are the range of mean value ±50% standard deviation across three regions for each season. The values in
panels are the ΔSNOx O3 enhancements average in 2016–2019 during different seasons. (c) Relative contributions of SNOx (dark shades) and ANOx (light shades) to
MDA8 O3 during summer (pink) and transitional seasons (green) (unit: %).
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In contrast, ANOx remain relatively stable across warm seasons without significant variations. Consequently,
SNOx account for a larger proportion of NOx emissions in summer and contribute more to regional O3 con-
centrations than in transitional seasons. Specifically, from 2016 to 2019, summer average ΔSNOx O3 enhance-
ments in urban (rural) areas are 1.3 (0.9) μg m− 3, 1.6 (1.4) μg m− 3, and 1.4 (2.1) μg m− 3 for the BTH, FWP, and
YRD regions, respectively, all of which are greater than that in transitional seasons, that is, 0.4 (0.3) μg m− 3, 1.0
(0.4) μg m− 3, and 0.4 (0.9) μg m− 3 for the same regions. Except for the YRD, the ΔSNOx O3 enhancements in
both summer and transitional seasons show an upward trend from 2016 to 2019 across the BTH and FWP regions.
This indicates that the impact of SNOx on O3 pollution is not limited to the summer seasons. A recent study also
provided robust evidence that agricultural fertilization drives the NO2 columns increases (Wang et al., 2024).
With the continuous decline in ANOx, the role of fertilizer‐induced SNOx in O3 formation during spring seasons
will become increasingly significant. More attention should be paid to soil emissions caused by fertilization
during transitional seasons in the future. The relative contributions of ANOx and SNOx to the O3 increase are also
evaluated. As shown in Figure 6c, the contribution of SNOx to O3 formation in rural areas can even exceed that of
anthropogenic emissions, which SNOx account for 84%–90%, 46%–65%, and 68%–81% of the total NOx
emissions‐induced O3 increases in the BTH, FWP, and YRD regions, respectively. Although the specific con-
tributions vary by regions, SNOx are consistently shown to promote MDA8 O3 increases.

3.4. CTM‐Based Validation

The UI‐WRF‐Chem model is utilized to validate the simulation results of ML model, specifically assessing the
impact of SNOx on the O3 increase, and the traditional robust methods are applied for this validation. As shown in
Figures 7a and 7b, the impacts of SNOx on warm‐season MDA8 O3 during 2015 and 2019 are both consistently
positive, with the values of 1.7–42.9 μg m− 3 and 1.5–44.2 μg m− 3, respectively, indicating that the CTM based on
physicochemical processes also confirms that the presence of SNOx promotes O3 formation. The contribution of
SNOx to surface O3 production varies significantly across regions. In 2015, the contributions of SNOx to MDA8
O3 (i.e., SNOx contributions) averaged in urban areas of the BTH and FWP regions are 23.8 μg m

− 3 and
27.1 μg m− 3, respectively, whereas those in rural areas are 22.0 μg m− 3 and 24.9 μg m− 3. By 2019, the SNOx
contributions averaged in urban areas increase to 24.0 μg m− 3 and 28.5 μg m− 3, and in rural areas, they change to
21.6 μg m− 3 and 25.1 μg m− 3. Focusing on these 2 years, the contributions of SNOx to MDA8 O3 in urban areas
are consistently slightly higher than those in rural areas, while the YRD region shows an opposite trend, where the

Figure 7. Simulated effects of SNOx on warm‐season MDA8 O3 concentrations in (a) 2015 and (b) 2019 by the UI‐WRF‐Chem model. The changes in the MDA8 O3
response to SNOx between 2015 and 2019 during (c) warm seasons, (d) summer, and (e) transitional seasons. The numbers inserted in the figure represent the minimum
and maximum values (average values) of the region.
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SNOx contributions from urban and rural areas show no significant difference (Figure S15 in Supporting In-
formation S1). The findings that BTH and FWP have a greater contribution of SNOx to O3 in urban areas align
with the ML model results. Moreover, the sensitivity of regional O3 formation to SNOx shows distinct seasonal
variations, with all regions exhibiting higher sensitivity in summer, which is also shown in the ML model results.

We also compared the changes in the response of MDA8 O3 concentration to SNOx between 2015 and
2019. Figures 7c–7e shows that the SNOx contributions to O3 formation during warm seasons in most regions
of eastern China are greater in 2019 than in 2015. Among them, the changes in warm‐season MDA8 O3
caused by SNOx are − 3.4–5.3 μg m

− 3 (mean value: 0.3 μg m− 3) in the FWP and − 2.7–4.0 μg m− 3 (mean value:
0.9 μg m− 3) in YRD regions, while the response of warm‐season MDA8 O3 to SNOx is not significant in the BTH
region (− 1.9–3.7 μg m− 3). Although the XGboost simulation results are slightly higher than the CTM results, with
the changes in the warm‐season MDA8 O3 response to SNOx from 2015 to 2019 being − 1.5–10.0 μg m

− 3 (mean
value: 0.7 μgm− 3) in BTH, − 1.9–9.2 μgm− 3 (mean value: 1.0 μgm− 3) in FWP, and − 2.2–9.9 μgm− 3 (mean value:
0.9 μg m− 3) in YRD regions (Figure S16 in Supporting Information S1), these ML models can still capture the
promoting effect of warm‐season SNOx on O3 increases. Additionally, the CTM results also indicate that the in-
crease in the contributions of SNOx to O3 is more pronounced in summer than in the transitional seasons, further
validating the accuracy of the conclusions from ML models regarding the seasonal differences in SNOx contri-
butions. The above findings demonstrate the ability of the XGBoost model to capture regional and seasonal var-
iations of SNOx contribution to O3 pollution. Therefore, the data‐drivenMLmodel proved to be a powerful tool for
quickly diagnosing the drivers of O3 pollution.

4. Uncertainties
Uncertainties remain in our conclusion upon the integration of the classification of urban and rural areas, FNR
threshold, NOx emissions, and the XGBoost and WRF‐Chem model simulation. First, the nighttime light data
used to distinguish between urban and rural areas are resampled to 0.1° using an averaging method. Resampling
high‐resolution nighttime light data to a lower resolution could result in the loss of certain information, and the
grid cells at this scale may, to some extent, obscure the boundaries of suburbs as an independent and distinct
category (Hutchins et al., 2017). Moreover, applying a uniform standard for urban‐rural division (DN threshold of
25) across different regions with varying levels of economic development also introduces certain uncertainties.
However, since this study focuses on the quantitative results for the entire region rather than the individual grid
cells, the potential misclassification of a small number of boundary cells is unlikely to significantly impact the
overall conclusions. Future studies could enhance classification accuracy by integrating multiple indicators (e.g.,
land cover types, population density) for a comprehensive urban‐rural assessment (Liu et al., 2017). Second, we
employ a statistical modeling approach to determine the thresholds that describe transitions between different
chemical regimes. These thresholds may be influenced by biases in satellite retrieval algorithms, and discrep-
ancies between surface MDA8 O3 concentrations and satellite‐observed O3 precursor columns, which may also
vary depending on the specific O3 metrics and fitting methods used. Third, there are uncertainties associated with
NOx emissions from both soils and anthropogenic emissions (MEIC). Fourth, due to the limited data for training
and feature selection, the XGBoost model may not fully capture O3 variations driven by SNOx and other factors.
Additionally, the discrepancy between the simulated MDA8 O3 and the observations may also affect the eval-
uation of the role of SNOx in O3 mitigation strategies.

5. Conclusions
This study quantifies the impact of ANOx and SNOx on the increasing trend of MDA8 O3 in urban and rural areas
of eastern China from 2015 to 2019, based on the XGBoost model and further verified by the UI‐WRF‐Chem
model, focusing on the three key regions (BTH, FWP, and YRD) because of high levels of O3. From 2010 to
2023, the occurrence of O3 pollution has gradually extended into transitional seasons (spring and autumn).
Although rural areas have lower MDA8 O3 and fewer pollution episodes compared to urban areas, the areas
affected by O3 pollution are gradually expanding. The decline rate of ANOx is faster than satellited‐based NO2
columns, and this discrepancy indicates that as anthropogenic emissions decrease, natural sources, particularly the
emissions from soils, exert a certain impact on the levels of NO2 columns. We thus estimate the proportion of
SNOx in total NOx emissions and find that their proportions vary between 23% and 27% during warm seasons
from 2015 to 2022.
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Results from the XGBoost model reveal that changes in SNOx lead to MDA8 O3 increases during 2015–2019
across all regions, with significant spatial and seasonal heterogeneity. In the urban areas of BTH and FWP,
despite a reduction in VOCs‐limited regimes, these regions still exhibit strong VOCs control characteristics; thus,
a slight reduction in SNOx leads to an increase in O3. Specifically, compared with 2015, the urban MDA8 O3
concentrations increase by 0.5–1.1 μg m− 3 in BTH and 0.9–1.6 μg m− 3 in FWP during warm seasons of
2016–2019. This increase exceeds those observed in the corresponding rural areas over the same period. How-
ever, in the YRD region, rural areas have primarily transitioned to a NOx‐limited regimes; thus, ΔSNOx O3
enhancements (1.0–1.3 μg m− 3) caused by increased SNOx are slightly higher than in urban areas (0.6–
1.2 μg m− 3). Furthermore, the response of O3 to SNOx changes is greater in summer than in the transitional
seasons. Nevertheless, SNOx can still promote the O3 formation during transitional seasons, and the ΔSNOx O3
enhancements show an increasing trend from 2016 to 2019. Therefore, with the continued reduction of ANOx, the
sensitivity of O3 formation to SNOx is expected to increase. We also employ the UI‐WRF‐Chem model to
independently validate these conclusions derived from the XGBoost. The CTM results show that the ML has the
ability to quantify the contributions of driving factors such as specific emissions to O3 pollution.

Our study emphasizes that despite lower SNOx compared to anthropogenic emissions, they still pose a notable
impact on the effectiveness of O3 pollution mitigation. As anthropogenic emissions decrease, O3 formation is
likely to become more sensitive to SNOx perturbations. Therefore, developing comprehensive O3 pollution
control strategies must consider the changes of both SNOx and ANOx and their impact on the O3 formation,
especially regional and seasonal differences in the sensitivity of O3 formation to SNOx. Meanwhile, the
contribution of fertilization‐driven SNOx to O3 formation in transitional seasons warrants more attention in future
studies.
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