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ABSTRACT: )e integration of human factors into arti+cial intelligence (AI) systems has emerged as a critical research
frontier, particularly in reinforcement learning (RL), where human-AI interaction (HAII) presents both opportunities
and challenges. As RL continues to demonstrate remarkable success in model-free and partially observable environ-
ments, its real-world deployment increasingly requires e,ective collaboration with human operators and stakeholders.
)is article systematically examines HAII techniques in RL through both theoretical analysis and practical case
studies. We establish a conceptual framework built upon three fundamental pillars of e,ective human-AI collaboration:
computational trust modeling, system usability, and decision understandability. Our comprehensive review organizes
HAII methods into +ve key categories: (1) learning from human feedback, including various shaping approaches; (2)
learning from human demonstration through inverse RL and imitation learning; (3) shared autonomy architectures
for dynamic control allocation; (4) human-in-the-loop querying strategies for active learning; and (5) explainable RL
techniques for interpretable policy generation. Recent state-of-the-art works are critically reviewed, with particular
emphasis on advances incorporating large language models in human-AI interaction research. To illustrate some
concepts, we present three detailed case studies: an empirical trust model for farmers adopting AI-driven agricultural
management systems, the implementation of ethical constraints in robotic motion planning through human-guided RL,
and an experimental investigation of human trust dynamics using a multi-armed bandit paradigm. )ese applications
demonstrate how HAII principles can enhance RL systems’ practical utility while bridging the gap between theoretical
RL and real-world human-centered applications, ultimately contributing to more deployable and socially bene+cial
intelligent systems.

KEYWORDS: Human-AI interaction; reinforcement learning; partially observable environments; trust model; ethical
constraints

1 Introduction
In the era of arti+cial intelligence (AI), its technologies have been increasingly applied across a wide

range of science and engineering domains, including cyber-physical systems (CPS), materials science,
hydrology, agriculture, and manufacturing [1–5]. )is broad integration is largely driven by the pursuit
of greater e-ciency in prediction and recommendation, leveraging data-driven insights to solve complex
problems. A key research goal within this context is the development of AI-driven autonomous systems
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capable of operating independently and making complex decisions without direct human supervision. )ese
systems hold the potential to revolutionize industries by enabling faster responses, reducing human errors,
and maintaining continuous operation in dynamic or hazardous environments [6].

Among the various AI approaches, reinforcement learning (RL) stands out as one of the most advanced
and in.uential techniques for enabling autonomy [7]. RL empowers systems to learn complex behavior
patterns through trial-and-error interactions with their environments. Unlike supervised learning, which
relies on labeled data, RL is driven by reward signals that guide an intelligent agent to take actions aimed
at maximizing long-term cumulative rewards. )rough this iterative learning process, the agent gradually
develops strategies, referred to as policies in the RL framework, to inform which actions to take under various
environmental conditions.

)ese learned policies function as decision-making blueprints, allowing the agent to select optimal
actions as circumstances change. As environments evolve or increase in complexity, RL agents continuously
re+ne their policies to improve performance. )is makes RL particularly well-suited for real-time, adaptive
tasks such as autonomous driving, robotic control, and dynamic resource management [8–11]. Furthermore,
RL’s capacity to manage sequential decisions under uncertainty positions it as a powerful tool for applications
where long-term consequences must be carefully considered.

However, while the capabilities of autonomous systems continue to grow, they raise important ethical
and philosophical questions [12]. Can machines be entrusted to make decisions solely with moral implica-
tions? Should AI systems act autonomously in scenarios involving human welfare, justice, or environmental
impact? )ese concerns are particularly pressing given that intelligent agents, whether algorithms, robots, or
other computational systems, are neither legally nor morally responsible. Unlike humans, they do not possess
consciousness, intent, or empathy, and thus cannot be held accountable in traditional ways. Consequently,
the responsibility for their behaviors must ultimately rest with the humans who design, develop, and deploy
them. Addressing these questions is critical to ensuring that AI technologies are not only technically e,ective
but also ethically grounded and socially responsible.

Furthermore, these ethical concerns become even more pronounced when AI-based systems operate
autonomously or semi-autonomously, shi/ing decision-making authority from humans to machines. )is
transformation reshapes human-technology interaction and introduces new ethical challenges, including
questions of distributive justice, risks of discrimination and exclusion, and transparency issues stemming
from the perceived opacity and unpredictability of AI systems [13,14]. Building on these shi/s in auton-
omy and cognitive capabilities, recent research highlights trust, usability, and understandability as three
fundamental pillars of human-AI interaction (HAII), o,ering potential pathways to address these ethical
challenges [15]. )ese aspects are closely tied to the aforementioned ethical considerations and play a pivotal
role in shaping how people perceive, adopt, and collaborate with AI systems.

Trust is widely regarded as a cornerstone for e,ective HAII and the successful adoption of AI systems.
It can be broadly de+ned as the willingness of individuals to accept and rely on AI-generated suggestions
or decisions, and to engage in task-sharing or information exchange with these technologies. High or
appropriately calibrated trust is essential: when trust is too low, users may avoid using AI systems even when
those systems o,er substantial bene+ts. Conversely, excessive or misplaced trust may lead to over-reliance
and critical judgment errors. In many high-stakes domains such as healthcare, +nance, autonomous driving,
and customer service, distrust remains a major barrier to adoption. )is o/en stems from the so-called
“black-box” nature of AI models, which makes their internal logic opaque and their behavior di-cult to
anticipate or validate. As a result, users may perceive AI decisions as arbitrary or unreliable, undermining
con+dence in the system. On the other hand, establishing and maintaining trust can signi+cantly accelerate
AI adoption and integration. When users perceive AI systems as transparent, reliable, and aligned with their
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goals, they are more likely to engage with and bene+t from these technologies. Ultimately, the full societal
value of AI can only be realized when individuals, organizations, and communities trust these systems
enough to meaningfully interact with and atop them [16].

)e second pillar of HAII is usability. Even the most intelligent AI system may fail to deliver its value
if it is not usable or if humans +nd it di-cult to understand, interact with, or incorporate it into their
work.ow. In traditional human–machine interaction research, usability has o/en been assessed through
interface design and task performance metrics such as e-ciency, accuracy, and error rates [17]. However,
in collaborative human–AI environments, the concept of usability extends well beyond interface-level
interactions. It encompasses the AI system’s ability to adapt to the human partner, responding dynamically to
the users’ needs, preferences, goals, and context. An AI system that can adjust its behavior, level of autonomy,
or recommendations in real time contributes more e,ectively to human performance and decision-making.
)is perspective represents a shi/ from viewing AI as a tool to reviewing it as a teammate, a symbiotic partner
working toward shared goals. Importantly, an adaptive AI that is trainable or context-aware can better align
its assistance with the user’s work.ow. For instance, by learning from a human’s decision-making patterns,
the system can provide more timely and context-relevant support. Such alignment has been shown to not
only improve team e-ciency and e,ectiveness, but also to enhance the human user’s sense of agency and
competence [18]. Recent studies con+rm that working with an adaptive AI collaborator, as opposed to a static
assistant, leads to higher task success and greater user satisfaction [19].

)e third crucial facet of HAII is understandability, o/en referred to as explainability or XAI (explain-
able AI). )is concept is deeply intertwined with the other pillars of trust and usability, as it directly
in.uences a user’s ability to comprehend, evaluate, and con+dently act on AI-generated outputs. At its core,
explainability refers to an AI system’s capacity to communicate the rationale behind its decision in ways that
are interpretable and meaningful to humans. )is capability is particularly important given a persistent trade-
o, in machine learning (ML): as models become more accurate and powerful, especially in the case of deep
learning (DL), they also tend to become more opaque and complex. As a result, it is di-cult to discern how
speci+c outcomes are predicted and recommended [20]. When users and stakeholders can understand the
underlying reasoning behind an AI’s recommendations or actions, they are more likely to trust the system and
are better equipped to verify, question, or override its decisions if necessary [21]. Indeed, one of the primary
motivations for XAI is the recognition that, without such clarity, users +nd it di-cult (if not impossible) to
fully trust AI, especially given its potential for making unpredictable or inexplicable errors. Explainability
thus serves as a mechanism for building con+dence and ensuring accountability, helping to demystify AI
processes and reinforce human oversight.

In the following section, this article will begin by reviewing pioneering works in the domain of HAII,
with particular emphasis on the aforementioned three foundational pillars: trust, usability, and understand-
ability. )ese elements have been widely recognized as critical to fostering e,ective, ethical, and sustainable
collaboration between humans and AI systems. By synthesizing key contributions across disciplines, this
review aims to highlight how each of these dimensions has evolved and identify existing gaps and emerging
challenges in current literature. Subsequently, the focus will shi/ to HAII in the context of RL, a growing area
of interest due to its capacity to enable adaptive, autonomous behavior. Various approaches, ranging from
human-in-the-loop training and reward shaping to imitation learning, will be reviewed to explore how RL-
based systems can enhance or hinder the human-AI relationship. )is section aims to bridge the conceptual
foundations of trust, usability, and understandability with the technical mechanisms of RL. Finally, this
article will present several recent contributions from the authors’ research group, which seeks to address
identi+ed limitations and push the boundaries of current HAII frameworks. )ese include novel algorithmic
developments to incorporate ethical constraints and trust awareness. Additionally, an experiment is designed
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to investigate the human trust evolution in AI systems. Collectively, these contributions aim to advance the
theoretical and practical understanding of how to build AI systems that are not only intelligent but also
aligned with human values, expectations, and needs.

)e novel contributions of this paper include:
• Providing a comprehensive overview of foundational works on trust, usability, and understandability

in HAII.
• Categorizing and reviewing +ve major RL-based HAII approaches, including state-of-the-art develop-

ments reported in recent publications.
• Presenting new contributions from the authors’ research group, focusing on (i) ethical constraint

integration in RL, (ii) trust-aware algorithmic design, and (iii) experimental investigation of human trust
evolution in AI systems.

2 Human-AI Interaction
In HAII, trust, usability, and understandability form three foundational pillars that collectively deter-

mine the e,ectiveness and acceptance of AI systems, as illustrated in Fig. 1. Understandability enables users
to grasp how and why an AI system makes decisions, fostering accurate mental models and informed
oversight. Usability ensures that users can interact with the system e-ciently and intuitively, minimizing
friction and cognitive load. Trust governs whether users feel con+dent relying on the AI, in.uencing their
willingness to adopt and engage with it. )ese three pillars are deeply interconnected: improvements in
understandability and usability tend to promote trust, while trust can shape how users perceive the system’s
usability and explanations.

Figure 1: )ree foundational pillars in HAII

2.1 Trust
Previous research suggests that trust in AI emerges from a combination of human, contextual, and

technology-based factors [16]. Human characteristics (e.g., a user’s general propensity to trust technology)
and contextual variables (e.g., high-stakes vs. low-stakes scenarios) signi+cantly in.uence the formation of
trust. However, technology-based factors are o/en unique to AI systems. Key attributes such as the accuracy
and reliability of an AI’s predictions and recommendations, its predictability and consistency over time, and
its transparency and explainability in decision-making are consistently identi+ed as critical determinants
of perceived trustworthiness [22]. In particular, because modern AI, especially ML models, can exhibit
unexpected or opaque behaviors, unlike knowledge-based systems, providing users with insight into how the
AI works and clearly communicating its uncertainties and limitations becomes essential. For instance, users
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are more likely to trust an AI agent that can clearly signal its con+dence level or justify its recommendations,
rather than one that delivers opaque decisions without context [23]. Recent work has therefore focused on
integrating features such as con+dence scores, explanations, uncertainty estimates, and trustworthiness cues
to foster appropriately calibrated user trust.

A central theme in human-AI trust research is the notion of trust calibration, ensuring that users’ trust
levels are aligned with the AI system’s actual capabilities and performance. Miscalibrated trust can manifest
as either over-trust (excessive reliance, even when unwarranted) or under-trust (unwarranted skepticism,
leading to under-use). Both outcomes are problematic: over-trust may lead users to follow incorrect AI
suggestions, while under-trust may cause them to dismiss valuable guidance, undermining the AI’s bene+ts.

One recent behavioral study found that simply labeling advice as AI-generated led participants to over-
rely on it, even when it contradicted their correct judgments or the available evidence [24]. )is blind
trust resulted in suboptimal or harmful decisions, highlighting how over-trust can degrade decision quality
and negatively a,ect others. To mitigate this, researchers advocate for dynamic trust calibration strategies.
One promising approach involves designing AI systems to be both interpretable and uncertainty-aware,
enabling users to adjust their trust based on the system’s likelihood of error. For example, Okamura and
Yamada [25] demonstrated a method of adaptive trust calibration, where the system monitored user reliance
patterns and delivered targeted alerts or explanations when users appeared to be over- or under-trusting.
)is interaction helped users recalibrate trust in line with the system’s true performance. Overall, interactive
transparency features can serve as important safeguards that promote critical engagement, preventing users
from uncritically deferring to AI outputs.

2.2 Usability
Usability, a core pillar of Human-AI Interaction, refers to how e,ectively and e-ciently users can

interact with an AI system to accomplish their goals with minimal friction or cognitive strain. A growing
body of empirical work highlights that adaptive AI systems, which personalize their behavior based on user
actions or situational context, can signi+cantly enhance usability by improving interaction quality, reducing
user workload, and increasing task e-ciency. )ese systems adjust their responses in real time, tailoring
support to user needs, which leads to more intuitive and productive human-AI collaboration. For example,
one controlled study found that domain experts using an AI decision aid with explainable visual feedback
(such as heatmap explanations) achieved higher accuracy than those using a non-transparent, black-box
AI, improving task success rates by approximately 5%–8% [26]. Another study shows that AI teammates
capable of learning from user input and dynamically adapting their guidance can reduce decision time
and cognitive load, thereby streamlining the interaction process [18]. Furthermore, adaptive interfaces that
provide timely, customized feedback or modulate task di-culty help keep users in a performance-optimized
zone, contributing to sustained usability and satisfaction [27]. )ese +ndings underscore the importance
of designing AI systems that are not only intelligent but also easy to use, responsive, and context-aware,
ensuring that users can interact with them seamlessly and e,ectively.

Designing human-centered AI (HCAI) o,ers a practical solution to addressing usability challenges
in HAII by aligning AI system behavior with human needs, preferences, and limitations. HCAI design
emphasizes building systems that account for the capabilities and constraints of both humans and AI. )is
approach directly enhances usability by making AI systems more intuitive, responsive, adaptive, and aligned
with human-centered goals. )e development of HCAI systems puts people +rst, supporting human values
such as rights, justice, and dignity, while also promoting goals like self-e-cacy, creativity, responsibility, and
social connections [28,29]. A recent review highlights the breadth of HCAI research, identifying established
clusters as well as emerging areas at the intersection of HAII and ethics [30]. In addition to proposing a
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new de+nition and conceptual framework of HCAI, the review outlines key challenges and future research
directions. Furthermore, Bingley and colleagues conducted a qualitative study involving AI developers and
users, revealing that current HCAI guidelines and frameworks need to place greater emphasis on addressing
real human needs in everyday life [31].

2.3 Understandability
Understandability, also referred to as explainability, is another fundamental pillar of HAII that enables

users to interpret, evaluate, and make informed decisions based on AI outputs. Broadly, there are two com-
plementary approaches to achieving understandability: (1) building interpretable models, and (2) generating
post-hoc explanations for “black-box” models [21,32–35]. Interpretable models are inherently transparent;
that is, users can directly inspect their internal logic. Examples include decision trees (where the decision path
can be followed step-by-step), linear regression with a limited number of features (where coe-cients indicate
variable importance), and rule-based or knowledge-based systems [36–39]. )ese models o,er intrinsic
explainability, meaning that the model’s structure itself explains. However, a trade-o, o/en exists: while these
models are easier to interpret, they may lack the capacity to capture complex patterns in high-dimensional
data, potentially compromising performance for transparency.

In contrast, many high-performing AI models, particularly deep neural networks (DNNs), are not
inherently interpretable. For these “black-box” systems, post-hoc explanation techniques are used to
enhance understandability without modifying the model’s internal structure. )ese techniques generate
explanations a/er a decision is made, o,ering insights into the model’s reasoning process. Common post-
hoc methods include: (1) generating feature importance scores, which identify which input variables most
in.uenced the output [40]; (2) providing local explanations for individual predictions, such as with LIME
(Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations), which use
simpli+ed surrogate models or Shapley values to attribute importance [41,42]; (3) visualizing internal
activations, for example with heatmaps that highlight the image regions most relevant to a vision model’s
decision [43,44]; (4) generating natural language justi+cations, which explain the model’s outputs in human-
readable text [45,46]; and (5) constructing counterfactual explanations, which illustrate how minimal
changes to input features could have altered the model’s decision [47,48]. )ese techniques play a vital role
in making complex AI systems more transparent and comprehensible, especially for non-technical users or
in domains requiring accountability.

Moreover, explainability is increasingly recognized as a cornerstone of accountable and transparent
AI, particularly in high-stakes domains such as healthcare, +nance, and criminal justice. In these settings,
users and regulators must be able to interrogate AI decisions, asking not only what decision was made, but
why and how. For instance, if an AI system recommends a treatment or a bail decision, stakeholders must
receive a satisfactory justi+cation. Without such transparency, trust erodes, and systems may fail to meet
ethical or legal requirements. Recent policy developments re.ect this urgency. )e European Union’s General
Data Protection Regulation (GDPR) has been interpreted as granting individuals a “right to explanation”
for algorithmic decisions, and the EU’s Ethics Guidelines for Trustworthy AI explicitly identify transparency
and explainability as core principles [49,50]. )ese regulatory pressures have further accelerated research in
XAI, emphasizing that understandability is not merely a desirable feature but is o/en a prerequisite for legal
compliance, ethical alignment, and public acceptance [21].

3 Reinforcement Learning and Its Extensions
Learning from interaction is a foundational principle that underlies many theories of intelligence,

both biological and arti+cial. RL formalizes this concept as a framework for goal-directed learning through
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sequential interactions between an agent and its environment [7]. In this framework, the agent learns to make
decisions over time by receiving feedback in the form of rewards, aiming to discover policies that maximize
cumulative returns.

)is section introduces the mathematical foundations of RL, focusing on the formalism of Markov
Decision Processes (MDPs). We then explore several key extensions that enhance RL’s expressiveness and
applicability. In particular, we examine Partially Observable Markov Decision Processes (POMDPs), which
address environments where the agent lacks full observability and must instead maintain and reason over
belief states. We also discuss approaches for handling temporally complex or logically structured tasks
by integrating temporal logic, automata-based task representations, and related formal methods. )ese
extensions allow RL systems to operate e,ectively in settings characterized by long-term dependencies, safety
constraints, and structured objectives beyond scalar reward signals, bringing RL closer to the demands of
real-world decision-making under uncertainty.

3.1 Reinforcement Learning
Fig. 2 illustrates the core structure of RL, which consists of +ve key components: the agent, the

environment, the internal state, actions, and the reward function. )e environment, whether physical or
virtual, represents the external setting with which the agent interacts. )rough this interaction, the agent
receives observations that provide (possibly partial) information about the environment, which it uses to
update its internal state, i.e., an internal representation or belief about the current con+guration of the
environment. Based on this internal state, the agent selects and executes a goal-oriented action that in.uences
the environment. In response, the agent receives a reward signal, a scalar feedback value that evaluates the
desirability of its recent behavior. )is trial-and-error learning process, driven by continuous interaction and
feedback, forms the foundation of RL.

Figure 2: RL agents learn from interaction with the environment

)e agent’s objective is to learn a policy, a mapping from observations or states to actions, that maximizes
the expected cumulative reward over time, o/en in the presence of uncertainty, partial observability, and
delayed action e,ects. In conventional RL, it is typically assumed that the environment is fully observable,
meaning the agent has direct access to the true state of the environment at each time step. Under this
assumption, the environment-agent interaction is formally modeled using an MDP, which provides a
mathematical framework for de+ning the states, actions, transition dynamics, and reward structure [51].

An MDP can be mathematically represented by a tuple

M = {S , A, T , s0 , R, Π, L} (1)

where S is a +nite state space, A is a +nite action space, T(s, a, s′) denotes the transition function with s, s′ ∈ S,
s0 is the initial state, and R(s) is the reward function. Additionally, Π is a set of atomic propositions, and L(s)
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is a labeling function. )e transition function de+nes the probability of transition to the next state s′ a/er
taking an action a in the current state s, and satis+es the normalization condition ∑s′∈S T(s, a, s′) = 1. )e
labeling function L ∶ S → 2Π assigns to each state a subset of atomic propositions, enabling task recognition
and speci+cation.

It shall be noted that a set of actions is available in each state, e.g., A(s) = {a∣a ∈ A}. )e output of an RL
learning process is an optimal policy π, i.e., the behavior function, which guides the agent’s decision-making
process by determining how to choose an action at the current state. )e objective function is the expected
return, also referred to as the accumulated rewards, as shown below.

U(s) = E [∞∑
t=0

γt R(st)∣st=0 = s] (2)

where γ ∈ [0, 1] is the discount factor that captures the importance of future rewards, and st denotes the state
at time t. While many policies may be feasible, the goal of an RL problem is to identify an optimal policy ξ∗,
as expressed in Eq. (3), which yields a sequence of actions to maximize the expected return over a +nite or
in+nite horizon.

ξ∗ = argmaxξU ξ (s) (3)

To numerically derive the optimal policy, two value functions are typically introduced: the state-value
function V(s) and the action-value function Q(s, a). A value function estimates the expected accumulated
reward that an RL agent can obtain. For example, Qξ(s, a), also called Q-values, quanti+es the expected
return when the agent begins in states s, executes action a, and then proceeds according to a given policy ξ.
A/er estimating these Q-values, the agent can derive the optimal policy by selecting the action in each state
that yields the highest value: ξ∗(s) = arg maxa∈A Q∗(s, a). )erefore, a major category of RL approaches,
value-based methods, focuses on estimating value functions that correspond to optimal policies.

Q-learning is a value-based RL algorithm, originally introduced to estimate the Q-value function by
exploring the state space of an MDP over discrete time steps [52]. It is considered a model-free method
because it does not require prior knowledge of the transition probabilities (T(s, a, s′)) and the reward
function (R(s)), which makes it well-suited to many real-world scenarios. In Q-learning, a/er taking action
a in the current state s, the corresponding Q-value can be updated using a modi+ed version of Bellman’s
equation, as shown in Eq. (4) [53].

Qnew(s, a) = Q(s, a) + α[R(s) + γ max
a′∈A Q(s′, a′) − Q(s, a)] (4)

where α ∈ (0, 1] is the learning rate.
Classical Q-learning assumes that both the state space (S) and action space (A) are small and discrete,

enabling the use of a tabular representation to store and update Q-values for each state-action pair
individually. However, in many practical applications, the state and/or action spaces are either continuous
or high-dimensional, making tabular methods infeasible due to the large number of state-action pairs. To
address this challenge, it is common to employ function approximation techniques, particularly DNNs, to
generalize Q-value estimates across similar states and actions. A notable advancement in this direction is the
deep Q-network (DQN) algorithm, which leverages DNNs to approximate the Q-function and enables RL
in complex, high-dimensional environments [54].

DQN introduces the use of two DNNs to stabilize learning: an evaluation Q-network Qe(s, a; θ e) and
a target Q-network Qt(s, a; θ t)where θ e and θ t denote the parameters (weights) of the respective networks.
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DQN is also a model-free RL method in which the agent interacts with the environment over multiple
episodes, each consisting of a sequence of state transitions. During each transition, the standard Q-value
update in Eq. (4) is adapted using the Q-networks as follows

Qnew(s, a) = Qe(s, a; θ e) + α [R(s) + γ max
a′∈A Qt(s′, a′; θ t) − Qe(s, a; θ e)] (5)

Using the above equation, the agent records each transition as an experience tuple and stores it in a
memory bu,er (also known as experience replay memory) [55]. During training, the evaluation Q-network
Qe(s, a; θ e) is updated at each step by randomly sampling a mini-batch of past experiences from the bu,er,
which helps break temporal correlations and improve learning stability. In contrast, the target Q-network
Qt(s, a; θ t) serves as a +xed reference during Q-value updates in Eq. (5). Its parameters remain unchanged
for a speci+ed number of steps and are then periodically synchronized with the evaluation network, i.e.,
θ t ← θ e) to reduce oscillations and divergence during training.

Another major class of RL methods is policy-based methods, di,ering from value-based approaches,
which directly optimize the policy without explicitly estimating value functions. Rather than learning a value
function and then deriving a policy from it, these methods aim to update the policy parameters θ to learn a
stochastic policy, πθ(a∣s), which de+nes the probability of selecting action a given state s. For example, policy
gradient methods improve the policy by applying gradient ascent on a performance objective and are known
to converge toward an optimal policy using gradient-based or evolutionary strategies [56]. A commonly
used objective function is the expected log-likelihood of the section actions, weighted by an estimate of their
advantage, computed over a +nite batch of trajectories:

Loss(s) = Et [logπθ(at ∣st)Ât] (6)

where Ât is an estimator of the advantage function at time t, re.ecting how much better action at is compared
to the average action at st . For a comprehensive overview of RL algorithms, readers are referred to recent
survey articles such as [57]. In this paper, however, we primarily focus on value-based RL methods.

3.2 Partially Observable Environments
Assuming a fully observable environment, MDPs have been extensively employed in robotics and

autonomous systems. However, in many real-world scenarios, agents o/en operate with incomplete percep-
tual information, making it di-cult to fully determine the underlying system state, i.e., the environment is
partially observable. In such cases, a more general mathematical framework, POMDP, must be adopted [58].

To accommodate both static and dynamic events, a probabilistic-labeled POMDP (PL-POMDP, or sim-
ply POMDP herea/er) can be formally de+ned as a tuple P = (S , A, T , s0 , R, O , Ω, Π, L, PL). )e elements
S , A, T , s0 , R, Π and L are de+ned analogously to those in the MDP formulation (see Eq. (1)). In addition,
a POMDP explicitly incorporates observation uncertainty and probabilistic state labeling. Ω ∶ S × A× O →[0, 1] is the observation probability function, indicating the likelihood of receiving observation o a/er taking
action a ∈ A(s) and transitioning to state s′ ∈ S. It satis+es the normalization condition∑o∈O(s′)Ω(s′, a, o) =
1 for all s′ and a. On the other hand, PL ∶ S × L → [0, 1] is the labeling probability function, denoting the
probability of associating label l ∈ L(s) associated with state s ∈ S. It satis+es∑l∈L(s) PL(s, l) = 1,∀s ∈ S.

)e set of state labels, L(s) = l1 , l2 , . . ., consists of atomic propositions that represent the occurrence
of speci+c events at a given state s. )e labeling probability function PL(s, l) distinguishes between static
and dynamic events: if PL(s, l) = 1, the event labeled by l is deterministically associated with state s (static),
whereas PL(s, l) < 1 re.ects uncertainty or variability (dynamic). )ese state labels can naturally identify goal
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states, enabling straightforward speci+cation of simple go-to-goal tasks. For more complex tasks, a formal
language framework can be used to describe desired behaviors using state labels as symbolic inputs. Similarly,
various constraints can also be encoded within such a formalism. Further details are provided in Section 3.3.

Over the past decade, researchers have developed a range of model-based algorithms to address POMDP
problems. Many state-of-the-art solvers are capable of handling complex domains involving thousands
of states [59]. One prominent class of these algorithms is Point-Based Value Iteration (PBVI), which
approximates the solution to a POMDP by computing the value function over a selected, +nite subset of the
belief space [60,61]. Notably, a belief state represents a probability distribution over all possible system states.
Following each state transition, the belief must be updated using the system’s transition and observation
models. In essence, model-based approaches, including those based on value iteration, solve an equivalent
MDP de+ned over the continuous belief space.

A commonly used alternative for handling POMDPs is the model-free approach, which does not
require prior knowledge of state transition or observation probabilities. In this framework, the agent
relies on a history of observations to determine actions, e,ectively mapping sequences of observations to
decisions. To extend the DQN framework for partially observable environments, the Q function (i.e., Q-
networks) is adapted to process a series of past observations rather than a single input. Speci+cally, let ot =(ot− j , ot− j+1 , . . . , ot) denote the observation sequence over the past j + 1 time steps. )e policy then becomes
dependent on this observation history, with the agent aiming to optimize the expected cumulative reward
de+ned in Eq. (2).

To better capture temporal dependencies in such settings, recurrent architectures like Long Short-
Term Memory (LSTM) networks, Gated Recurrent Units (GRUs), or other recurrent neural network (RNN)
variants are o/en integrated into the DQN architecture, as shown in Fig. 3 [8]. )is leads to reformulated
Q-networks: the evaluation network QE(ot , at ; θE) and the target network QT(ot , at ; θT). As a result, the
standard DQN update rule (Eq. (5)) is modi+ed to accommodate the sequential input structure as below.

Qnew(ot , at) = QE(ot , at ; θE) + α [rt + γ max
at+1∈A QT(ot+1 , at+1; θT) − QE(ot , at ; θE)] (7)

Figure 3: RNN-based Q networks in DQN for POMDP problems

3.3 Temporal Logic and Finite-State Automaton
Linear temporal logic (LTL), a formalism within the domain of formal languages, is widely used to

specify linear-time properties by describing how state labels evolve over sequential system executions [62].
LTL builds upon propositional logic, incorporating not only standard Boolean operators but also temporal
ones. Two fundamental temporal operators are◯ (read as “next”) and U (read as “until”). In this context, let
β ∈ Π denote an atomic proposition, and let ϕ, ϕ1 and ϕ2 represent LTL formulas. )e syntax of valid LTL
formulas can be described using the following grammar rule adapted from [63]:

ϕ ∶= True ∣ β ∣ ϕ1 ∧ ϕ2 ∣ ¬ϕ ∣ ◯ϕ ∣ ϕ1Uϕ2 (8)
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here, ¬ and ∧ stand for negation and conjunction, respectively. )e expression ◯ϕ is satis+ed at a given
time step if ϕ holds at the immediate next time step. )e expression ϕ1Uϕ2 is satis+ed if ϕ2 holds at some
point in the future, and ϕ1 holds at every time step up to (but no including) that point. LTL also includes
other commonly used temporal constructs: ♢ (“eventually”) asserts that ϕ becomes true at some point in the
future, while ◻ (“always”) guarantees that ϕ holds at all time steps from the current one onward.

)e meaning of LTL formulas is evaluated over in+nite sequence, or words, denoted as w = w0w1 . . .,
where wi is an element of 2Π for i ≥ 0, and Π is the set of atomic propositions de+ned in MDP and POMDP
(Sections 3.1 and 3.2). Using the satisfaction relation symbol⊧, the semantics of LTL formulas can be formally
de+ned as

w ⊧ True
w ⊧ β ⇔ β ∈ L(w[0])
w ⊧ ϕ1 ∧ ϕ2 ⇔ w ⊧ ϕ1 and w ⊧ ϕ2
w ⊧ ¬ϕ ⇔ w ∣≠ ϕ
w ⊧ ◯ϕ ⇔ w[1 ∶] ⊧ ϕ
w ⊧ ϕ1Uϕ2 ⇔ ∃t s.t. w[t ∶] ⊧ ϕ2 ,∀t′ ∈ [0, t), w[t′ ∶] ⊧ ϕ1

(9)

LTL formulas can be systematically transformed into equivalent representations in the form of automata,
enabling automated veri+cation techniques such as model checking to assess whether a system satis-
+es a speci+ed temporal property [62]. One commonly used class of automata for this purpose is the
Limit-Deterministic Generalized Büchi Automaton (LDGBA) [64]. LDGBAs are particularly advantageous
because they strike a balance between the expressiveness of nondeterministic automata and the e-ciency of
deterministic ones. By converting an LTL formula into an LDGBA, it becomes possible to encode temporal
tasks as automata that accept exactly the sequences (executions) satisfying the formula. )is transformation
enables checking whether all possible system executions satisfy the temporal speci+cation, or identifying
counterexamples when violations occur.

An LDGBA can be de+ned as a tuple A = (Q , Σ, δ, q0 , F), where Q is a +nite set of states, and Σ = 2Π

is the +nite input alphabet from the power set of atomic propositions Π (de+ned in MDP and POMDP).
δ is the transition relation, de+ned as a function δ∶ Q × (Σ ∪ {ε})→ 2Q . q0 ∈ Q is the initial state, and F ={F1 , F2 , . . . , F f } is a set of accepting components, where each Fi is a subset of Q. )e set of states Q is
partitioned into two disjoint subsets: a deterministic part QD and a non-deterministic part QN , such that
QD ∪ QN = Q and QD ∩ QN = ∅. Speci+cally, each transition from a state in QD under any input symbol
β ∈ Σ leads to exactly one successor, i.e., ∣δ (q, β) ∣ = 1 for all q ∈ QD . Transitions originating from states
in QD only point to other states in QD . In other words, for all q ∈ QD and β ∈ Σ, there exist δ (q, β) ⊆
QD . Transitions labeled with ε (which do not consume input) are allowed only from nondeterministic to
deterministic states, that is, from q ∈ QN to q′ ∈ QD . Additionally, each accepting set Fi is entirely contained
within QD , i.e., Fi ⊆ QD for all i.

Given an in+nite input word w = w0w1 . . ., a run of the LDGBA is an in+nite sequence of states q =
q0q1 . . ., such that each successive state is determined by the transition relation, i.e., qi+1 ∈ δ(qi , wi). De+ne
inf(q) as the set of states that appear in+nitely o/en in the run q. )e word w is accepted by the LDGBA if,
for every accepting set Fi , the intersection inf(q) ∩Fi is non-empty. For practical guidance and examples
on how such automata are constructed, readers may refer to the Owl tool [65]. In addition, a detailed example
and explanation of how LTL encodes ethical constraints and guides the agent’s behavior in the clinical setting
is provided in the case study in Section 5.2.
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3.4 Complex Tasks and Speci%cations in RL
LDGBAs are frequently applied in RL and motion planning under temporal constraints by constructing

the product of an MDP and an LDGBA. )is product formulation enables the seamless incorporation of logic
speci+cations into the decision-making processes for complex tasks [66–68]. Similarly, methods have been
extended to construct the product of a POMDP and an LDGBA, addressing the challenges in environments
with partial observability [8], as illustrated in Fig. 4.

Figure 4: )e product of LDGBA and POMDP for RL problems with complex tasks

Combining a POMDP P = (S , A, T , s0 , R, O , Ω, Π, L, PL) with an LDGBA A = (Q , Σ, δ,q0 , F) results
a product POMDP, which is de+ned as P× = P ×A = (S×, A×, T×, s×0 , R×, O , Ω×, F×). )e product POMDP
augments the environment’s state space with automaton states to track satisfaction of the LTL speci+cation.
Each component is de+ned as follows:

• State Space: S× = S × Q with s× = ⟨s, q⟩.
• Action Space: A× = A∪ {ε} including both environment actions and ε-transitions.
• Initial State: s×0 = ⟨s0 , q0⟩.
• Probabilistic Transition Function: T× = S× × A× × S× → [0, 1] is de+ned by:

T× (s×, a×, s×′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T(s, a×, s′) q′ = δ (q, l) , l ∈ L(s′) and a× ∈ A
1 a× ∈ {ε} and q′ ∈ δ(q, ε) and s′ = s,
0 otherwise.

(10)

where s×′ = ⟨s′, q′⟩.
• Reward Function: Rewards are de+ned over product states:

R×(s×) = { R(s) l ∈ L(s), q′ = δ (q, l) ∈ Fi , and Fi ∈ F
0 otherwise. (11)

• Observation Function: Ω× = S× × A× × O → [0, 1] is

Ω×(s×′, a×, o) = Ω(s′, a×, o) (12)

if a× ∈ {ε}, no observation is emitted; the environment remains in state s, while the automation transition
via δ(q, ε).

• Accepting Conditions: )e set of accepting sets in the product POMDP is F× = {F×1 , F×2 , . . . , F×f }where
F×i = {⟨s, q⟩∣s ∈ S; q ∈ Fi}.
A run on P× is represented by an in+nite sequence (s0 , q0)(s1 , q1) . . ., integrating both the environ-

ment’s path and the automaton’s progression. )e expected return from an initial state under a policy ξ×
is:
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U ξ×(s×0 ) = Eξ× [∞∑
t=0

γt R(s×t )∣s×t=0 = s×0 ] (13)

)is formulation enables evaluating whether a policy not only performs well in the environment but
also satis+es the desired temporal logic objectives.

)e optimal policy ξ×∗(ot , qt) de+ned over the product POMDP P× corresponds to an optimal policy
ξ∗(ot) on the original POMDP P, while ensuring compliance with the given LTL speci+cation. Here, ot
represents the sequence of observations encountered by the agent, and qt denotes the associated sequence
of automaton states resulting from label transitions. )is formulation assumes that the agent receives labels,
i.e., automaton input symbols, as part of the environment’s feedback. When the agent has full knowledge of
the LTL speci+cation and its corresponding automaton, it can reconstruct the automaton state trajectory qt .
However, in scenarios where the agent lacks such prior knowledge, the automaton state transitions cannot
be directly inferred. In such cases, the policy must instead rely on the history of observations and perceived
label sequences, and is thus expressed as ξ×∗(ot , lt) where lt = (lt− j , lt− j+1 , . . . , lt).
3.5 Applications of Reinforcement Learning

RL has become a cornerstone of modern AI, with applications spanning a wide range of scienti+c,
industrial, and societal domains. Its core strength lies in solving sequential decision-making problems
under uncertainty, where an agent must learn e,ective strategies through interaction and feedback from the
environment.

• Robotics and autonomous systems: In robotics, RL enables machines to learn complex motor skills
such as grasping, locomotion, and manipulation without explicit programming, o/en outperforming
traditional control methods in unstructured settings [69–71]. For autonomous systems, including self-
driving vehicles, unmanned aerial vehicles (UAVs), and mobile robots, RL provides a framework for
real-time decision-making, motion planning, and obstacle avoidance under uncertainty [72–74]. By
leveraging simulated environments for training and transferring learned policies to the physical world,
RL allows these systems to achieve robust, adaptive, and scalable performance in tasks ranging from
warehouse automation to autonomous exploration.

• Energy and sustainability: RL has shown signi+cant promise in advancing energy e-ciency and
sustainability by enabling intelligent decision-making in complex, resource-constrained systems. In
power grid management, RL has been applied to optimize demand response, balance renewable
energy integration, and improve fault detection and recovery, thereby enhancing grid stability and
resilience [75–77]. In building energy systems, RL supports dynamic control of heating, cooling, and
lighting to minimize energy consumption while maintaining occupant comfort [78,79]. Similarly, in
renewable energy operations, RL can optimize wind farm coordination, solar panel tracking, and battery
storage management to maximize output and reduce waste [80,81]. Beyond energy systems, RL has been
applied to water resource management, smart irrigation, and waste reduction strategies, contributing to
broader sustainability goals [82–84]. By continuously adapting policies to variable conditions such as
weather patterns, consumption behavior, and resource availability, RL enables sustainable solutions that
are both cost-e,ective and environmentally responsible.

• Healthcare and medicine: RL is increasingly applied in healthcare and medicine, where adaptive
decision-making is critical for improving patient outcomes. In personalized medicine, RL has been
used to optimize treatment strategies for chronic diseases such as diabetes, cancer, and sepsis by
continuously adjusting drug dosages or therapy schedules based on patient responses [85–87]. In
medical imaging, RL assists in automating diagnostic tasks, improving image acquisition protocols, and
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guiding interventions with greater precision [88,89]. Robotic surgery and rehabilitation also bene+t
from RL, where agents learn to perform delicate maneuvers or adapt therapy regimens to individual
patient needs [90,91]. Beyond clinical care, RL contributes to hospital operations by optimizing resource
allocation, scheduling, and patient .ow management [92,93]. By learning from complex, uncertain, and
high-dimensional health data, RL systems can support clinicians in making evidence-based, real-time
decisions, thereby enhancing both e-ciency and quality of care.

• Finance and economics: RL has emerged as a powerful tool in +nance and economics, where decision-
making under uncertainty and dynamic environments is fundamental [94]. In +nancial markets, RL is
applied to algorithmic trading, enabling agents to learn adaptive strategies for portfolio optimization,
risk management, and high-frequency trading [95]. In economic policy and macroeconomic model-
ing, RL has been used to simulate and evaluate interventions such as monetary policy adjustments
or carbon pricing schemes, allowing exploration of long-term impacts in complex systems [96,97].
Beyond markets, RL supports operations in banking and insurance by optimizing credit scoring, fraud
detection, and dynamic pricing [98,99]. Its ability to balance risk and reward in uncertain and evolving
contexts makes RL particularly suited to +nancial and economic domains, where small improvements
in decision-making can translate into signi+cant economic value.

• Natural sciences and engineering: RL is increasingly being applied across the natural sciences and engi-
neering to address problems characterized by complex dynamics, uncertainty, and the need for adaptive
control. In environmental and climate sciences, RL has been used to optimize .ood mitigation strate-
gies and water management in agricultural systems, supporting e-cient resource allocation and risk
reduction under variable conditions [100,101]. In materials science and chemistry, RL guides simulations
and experiments to discover novel compounds, catalysts, and metamaterials [102,103]. In engineering,
RL enables intelligent control of systems ranging from adaptive tra-c networks and structural health
monitoring to advanced manufacturing processes [3,104]. Together, these applications demonstrate RL’s
capacity to operate in high-dimensional, data-rich environments, accelerating scienti+c discovery while
enhancing the resilience, e-ciency, and sustainability of natural and engineered systems.

4 Human-AI Interaction in Reinforcement Learning
)is study classi+es the implementation of the HAII mechanism into RL with the following di,erent

approaches:

• Learning from human feedback (LHF): In this approach, RL agents learn by using human-provided
feedback, such as scalar reward signals, preference comparisons, or evaluative judgments, to guide policy
improvement and optimize behavior [105]. )is learning is typically passive, as the human evaluates
agent behavior a/er it is produced, rather than being actively queried by the agent.

• Learning from human demonstrations (LHD): )is approach uses human demonstrations of desired
behavior to kickstart or guide RL. Methods range from inverse RL (inferring reward functions from
expert trajectories) to interactive imitation learning (where the agent may iteratively request corrective
demonstrations from a human).

• Shared autonomy (SA): In this approach, human and AI agents collaboratively share control of a system.
)e agent assists the human by inferring goals, predicting intent, or adjusting suboptimal inputs—o/en
using RL to learn when and how to intervene or assist.

• Human-in-the-Loop querying (HLQ): )is approach allows agents to actively query a human for
information, such as demonstrations, preferences, or advice, to improve learning e-ciency. By selecting
informative queries or asking targeted questions, the agent can reduce the total amount of human
e,ort needed.
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• Explainable RL (XRL): In this approach, the RL agent generates human-understandable explanations
about its decision-making process, including why speci+c actions are chosen. )ese explanations
enhance transparency and trust, enabling humans to provide better-informed feedback, corrections,
or constraints.

Although this study reviewed each approach individually, these approaches form a spectrum of HAII
mechanisms that are o/en used together in the same system, as shown in Table 1. )ey complement each
other to enable more e,ective, e-cient, and trustworthy collaboration between humans and RL agents.
Additionally, their relationships with three HAII pillars (discussed in Section 2) are illustrated in Table 2.

Table 1: )e intertwining of +ve approaches to implementing HAII mechanisms in RL

LHF LHD SA HLQ XRL

LHF −
Feedback can
complement

demos to re+ne
policies.

SA can use
feedback for

better
collaboration.

Queries o/en
request feedback
as information.

Explainability
helps humans

understand
feedback
context.

LHD

Demonstrations
can be

combined with
feedback for

guidance.

−
Shared control

may rely on
demonstrations
to bootstrap the

agent.

Queries may ask
for corrective

demonstrations.

Explanations
may clarify what

the agent
learned from

demonstrations.

SA

Feedback
informs

when/how the
agent

intervenes.

Demonstrations
help agents learn

collaborative
behaviors.

−
Queries can help

negotiate
control or clarify

intent.

Explanations
may build trust

in agent
interventions.

HLQ
Queries actively

request
feedback.

Queries actively
request

demonstrations
or corrections.

Queries
negotiate shared

control.
−

Explanations
justify queries,

making
responses more

e,ective.

XRL

Explains
decisions to

improve
feedback quality.

Explains
demo-based

learning
outcomes.

Explains
autonomous

actions to
human

collaborators.

Explains why
queries are

made.
−

Table 2: Relationships between +ve HAII approaches and the three HAII pillars

Trust Usability Understandability

LHF High: Aligns AI with human
values.

Moderate: Adapts to human
work.ows.

Low: Limited transparency
of reasoning.

(Continued)
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Table 2 (continued)

Trust Usability Understandability

LHD
Moderate: Learns reliable

behaviors from
demonstrations.

High: Easy for humans to
provide examples.

Moderate: Shows behavior
patterns but internal

reasoning may remain
opaque.

SA High: Human-guided AI
actions increase reliability.

High: AI assists without
taking full control.

Moderate: AI behavior is
partially transparent through

shared control.

HLQ High: Human feedback
ensures reliable AI decisions.

High: Humans can guide AI
interactively.

Moderate: Queries reveal
reasoning partially.

XRL High: Explanations make AI
decisions more reliable.

Moderate: Users can act on
insights but need some

expertise.

High: Clear rationale for AI
actions.

4.1 Learning from Human Feedback
Human feedback can o/en be combined with environmental feedback and integrated into the reward

function, enabling RL agents to perform tasks that better re.ect human preferences and needs. )is approach
is known as reward shaping [105]. In addition, recent developments have employed generative AI models,
such as large language models (LLMs), to incorporate human feedback into the RL learning process [106].
Importantly, there is a distinction between direct human feedback, which re.ects authentic user values
and preferences, and synthetic feedback generated by LLMs, which can simulate or approximate human
input at scale. While LLMs o,er clear practical advantages, such as reducing annotation costs, accelerating
prototyping, and enabling richer language-based interaction, they also raise ethical and methodological
concerns. Synthetic feedback may unintentionally embed model biases, misrepresent user intent, or obscure
accountability if used as a replacement for real human input. )us, a critical open question is not whether
LLMs can generate feedback, but how they should be used: as a complement to, rather than a replacement
for, genuine human oversight. While human feedback can be used in various ways, including value shaping,
policy shaping, and decision biasing, this section focuses speci+cally on reward shaping and the integration
of feedback via LLMs, as illustrated in Fig. 5.

Figure 5: )e implementation of LHF into RL

LHF directly implements the three pillars of HAII by aligning AI systems more closely with human
expectations and needs. It strongly enhances trust, as human feedback allows AI to adopt behaviors that
re.ect users’ values, preferences, and priorities, making decisions more reliable and socially acceptable. It
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moderately improves usability by enabling AI systems to adapt to human work.ows and practical constraints,
reducing friction in interactions and facilitating adoption in real-world settings. LHF also provides partial
support for understandability, as analyzing feedback signals can shed light on the factors in.uencing AI
behavior, though full transparency of internal decision-making may remain limited. By integrating human
guidance directly into learning processes, LHF helps bridge the gap between theoretically optimal AI policies
and solutions that are actionable, interpretable, and widely accepted by users, demonstrating its pivotal role
in human-centered AI design.

4.1.1 Reward Shaping
Reward shaping converts human feedback into a numerical value as a supplemental reward (either

incentive or penalty) to RL agents during HAII. )is additional reward is o/en added to the reward provided
by the environment [107–109]. Consequently, the overall reward function is revised as R = Re + Rh , where
Re represents the environmental reward and Rh is the human feedback reward. For example, in the TAMER
(Training an Agent Manually via Evaluative Reinforcement) framework, the human feedback reward, also
known as the human reinforcement function, is expressed as Rh(s, a) = βĤ(s, a). Here, β is a decaying
weight factor, and Ĥ is the agent’s internal model that predicts the expected human feedback for a given
state-action pair [110–112].

Ibrahim et al. comprehensively reviewed reward engineering and shaping in RL [113]. )eir work
highlights reward shaping as a critical technique for accelerating learning and guiding agents toward desired
behaviors, particularly in environments with sparse or delayed rewards. Among various methods, potential-
based reward shaping (PBRS) stands out for its strong theoretical guarantees, as it modi+es the reward using a
potential function to provide additional guidance without altering the optimal policy [108,114]. )e paper also
emphasizes the growing importance of incorporating human feedback into reward shaping, where human
evaluations, preferences, or demonstrations help construct internal reward models that better align agent
behavior with human intentions [115–117].

In a recent work done by Golpayegani et al., the authors applied RL to advancing sustainable manu-
facturing for job shop scheduling (JSS) [118]. )ey proposed an ontology-based adaptive reward machine to
address unforeseen events in dynamic and partially observable environments. In their paper, the generation
of additional rewards does not rely on explicit real-time human feedback. Instead, it is achieved automatically
through an ontology-based mechanism that embeds domain expert knowledge. Particularly, the ontology
encodes concepts and properties relevant to the JSS environment and labels them with positive or negative
beliefs that re.ect desirable or undesirable outcomes from a human perspective, such as high machine
utilization or low waiting time [119]. When the RL agent observes its environment, it maps observations to
high-level ontological concepts, extracts new propositional symbols, and dynamically updates the reward
machine. )is process creates new reward functions by maximizing properties with positive beliefs and
minimizing those with negative beliefs, allowing the agent to adapt its behavior to unforeseen events.

In another study, Jeon et al. proposed a robot teaching framework using RL in which robots learn
cooperative tasks by integrating real-time sentiment feedback from human trainers [120]. Using a speech-
based sentiment analysis module, the system detects humans’ emotional tone, such as encouragement
or frustration, and adaptively transforms this into an additional reward signal that augments the robot’s
standard task-based rewards [121,122]. )is human-derived reward dynamically shapes the learning process,
helping robots adjust their behavior to better align with human expectations and cooperation goals.
Experiments show that robots guided by sentiment-based rewards achieve faster convergence, more stable
learning, and improved cooperative performance compared to purely environment-driven RL.
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4.1.2 Reward Shaping via LLMs
Recent research explores leveraging LLMs to automate or enhance reward shaping in RL. By interpreting

natural language feedback, demonstrations, or preferences, LLMs can generate auxiliary rewards that guide
RL agents more e-ciently than manually designed reward functions [123–125]. For instance, LLMs can
translate human instructions (e.g., “Avoid unsafe actions”) into quantitative shaping rewards or infer implicit
preferences from textual critiques. )is approach is particularly valuable in complex, real-world tasks where
sparse or ambiguous environmental rewards hinder learning. However, challenges remain, such as mitigating
biases in LLM-generated rewards and ensuring alignment with true objectives [126,127].

Chaudhari et al. provided a comprehensive critique of LHF as applied to LLMs, dissecting its compo-
nents, challenges, and practical implications [128]. )e paper systematically analyzes the LHF pipeline, from
human preference data collection and reward modeling to policy optimization, highlighting key bottlenecks
like reward misgeneralization, scalability limitations, and annotator biases. It contrasts with some other
alternative approaches, such as direct preference optimization, adversarial training, and underscores trade-
o,s between alignment, diversity, and computational cost. )e authors also discussed ethical concerns (e.g.,
ampli+cation of harmful preferences) and proposed future directions, including hybrid methods and better
human-AI collaboration frameworks. By synthesizing empirical +ndings and theoretical insights, this survey
serves as a roadmap for improving LHF’s e-cacy and reliability in LLM deployment.

A recent study introduced Text2Reward, a framework that integrates LLMs to automatically generate
dense, interpretable reward functions for RL tasks from natural language task descriptions [129]. By
prompting an LLM to decompose high-level goals into structured reward components (e.g., “move forward”
to linear velocity reward) and synthesize them into executable code, Text2Reward eliminates the need for
manual reward engineering and iteratively incorporates human feedback from users to improve reward
functions. Experiments in robotic locomotion and manipulation tasks showed that policies trained with
LLM-generated rewards achieve performance comparable to those trained with human-designed rewards,
while also enabling real-time adjustments via natural language. )e method bridges the gap between
high-level intent and low-level RL implementation, making RL more accessible to non-experts.

It is worth mentioning that, in many state-of-the-art achievements, LLMs in RL act as proxies for
human feedback, even without real-time or runtime HAII. For example, Sun et al. introduced an LLM-
as-reward-designer paradigm where the LLM automatically shapes rewards through iterative dynamic
feedback, without requiring direct human input during training [130]. )e LLM evaluates agent behavior,
identi+es suboptimal actions, and adjusts dense/sparse rewards to guide learning, mimicking human-like
reward engineering but in a scalable and automated manner. In another study, Qu et al. use LLMs to
interpret environment states and agent behaviors, generating intermediate rewards that guide learning more
e,ectively [131]. By integrating LLM-derived latent rewards, the framework improves sample e-ciency and
policy optimization in complex, long-horizon tasks.

Another approach included LLM-guided pretraining for RL agents, where an LLM (e.g., GPT) provides
high-level task guidance to accelerate learning [132]. )is approach simulates human-like feedback by
critiquing agent behaviors during pretraining and provides reward-shaped advice to bootstrap RL policies.
Additionally, Guo et al. presented an LLM-based framework for automated reward shaping in robotic RL,
where LLMs interpret task descriptions and generate dense, semantically aligned reward functions [133].
)e key innovation is a hierarchical reward decomposition: the LLM +rst breaks tasks into sub-skills, then
designs weighted sub-rewards for each skill, dynamically adjusting their importance based on real-time
agent performance. )is approach also maintains interpretability by mapping LLM outputs to modular
reward components.
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4.1.3 Others
)e other techniques of LHF in RL include value shaping, policy shaping, and preference modeling.

Value shaping addresses the challenge of sparse or delayed rewards in RL by incorporating additional
immediate feedback signals [134,135]. )ese signals, including human feedback, provide intermediate
guidance about the relative value of actions or states, helping to bridge the temporal credit assignment
problem [136]. Policy shaping incorporates human feedback by directly modifying the policy update rule in
RL [137]. Model-free policy shaping is typically implemented by adding a human guidance term to the policy
gradient, which biases the agent’s actions toward those preferred by the human demonstrator or critic [138].
Several model-based policy shaping can be found in [110–112,139–142]. Additionally, preference modeling
is a framework for learning reward functions or policies directly from human judgments (e.g., rankings
or comparisons of trajectories). Instead of requiring explicit rewards or demonstrations, the agent infers
objectives from relative human preferences over pairs of state-action sequences [143,144]. Table 3 presents
an overview of the articles discussed in detail subsequently.

Table 3: Reviewed papers using LHF with value shaping, policy shaping, and preference modeling

Paper LHF techniques
Tarakli et al. convert natural language feedback into reward signals via

Q-augmentation, improving agent training through human guidance [145]. Value shaping

Faulkner et al. propose a human-guided policy shaping method that
accelerates RL agent learning by focusing exploration on supervisor-attended

states [146].
Policy shaping

Juan et al. introduce a human-guided RL framework where evaluative
feedback shapes policy transfer across tasks by so/ly weighting gradient

updates [147].
Policy shaping

Lee et al. present a benchmark for preference-based RL that simulates human
feedback imperfections, enabling systematic evaluation of algorithmic

robustness and e-ciency in learning from preferences [148].
Preference modeling

Knox et al. investigate how agents in preference-based RL can misinterpret
the advantage function that measures relative action quality as the reward

function [149].
Preference modeling

Tarakli et al. presented a novel RL framework, ECLAIR (Evaluative Corrective Guidance Language as
Reinforcement), in which an agent learns from natural language feedback instead of prede+ned numeric
rewards [145]. )e authors employed value shaping, especially Q-augmentation methods, to convert qualita-
tive human feedback into structured reward signals, dynamically adjusting the agent’s value function to align
with the trainer’s guidance [150]. By integrating LLMs with RL, the method enables more intuitive human-
robot collaboration, as demonstrated in simulated environments where it improves learning e-ciency and
task performance over traditional RL approaches in advanced robotics.

Faulkner et al. introduced Supervisory Attention Driven Exploration (SADE), a policy shaping method
where a human supervisor guides an RL agent’s exploration by directing attention to key states (e.g., via
gaze or clicks) and providing shaping rewards [146]. )e approach dynamically scales exploration noise
using an attention mask and converts feedback into potential-based rewards, reducing sample complexity
in robotic tasks (e.g., block stacking) while preserving convergence guarantees. Unlike traditional policy
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shaping, SADE focuses on biasing exploration rather than directly modifying actions, balancing human
guidance with autonomous learning.

In another work, Juan et al. proposed a framework for policy transfer in RL using human evaluative
feedback to shape exploration [147]. )e method integrates human-provided evaluations into a progressive
neural network, where feedback dynamically scales the policy’s gradient updates, biasing learning toward
preferred behaviors without hard action overrides. By combining human guidance with multi-task RL, the
approach achieves e-cient policy adaptation across related tasks, demonstrating faster convergence and
higher success rates compared to standard RL baselines. While not traditional policy shaping, the human
feedback implicitly shapes the policy through loss function modi+cations, o,ering a .exible alternative to
direct action corrections.

Lee et al. presented a comprehensive benchmark designed to evaluate and advance preference-based RL
methods, which learn from human feedback rather than pre-de+ned rewards [148]. )e authors addressed
the lack of standardized evaluation in general preference-based RL approaches by introducing simulated
human teachers that exhibit realistic irrationalities, including stochastic preferences, myopic decision-
making, occasional mistakes, and query skipping, to better re.ect real-world human input. )e benchmark
covers diverse tasks from locomotion to robotic manipulation, enabling systematic comparison of algorithms
under varying conditions. Using this benchmark, the authors evaluated state-of-the-art methods and found
that while these algorithms perform well with perfectly rational teachers, their e,ectiveness degrades
signi+cantly when faced with noisy or biased feedback [115]. )ey also pointed out that preference-based RL
may have potential drawbacks if malicious users teach the bad behaviors or functionality, which raises safety
and ethical issues.

Furthermore, Knox et al. investigated how RL agents, particularly those trained with preference-
based LHF, can misinterpret the advantage function (which measures relative action quality) as the reward
function (which measures absolute desirability) [149]. )e authors showed that when agents are trained using
preference comparisons, where humans rank trajectories, they o/en con.ate advantage with reward, leading
to suboptimal or unintended behaviors. )rough theoretical analysis and experiments, they demonstrated
that this confusion can cause agents to prioritize actions that merely outperform alternatives rather than
those that are objectively best. )e paper highlights implications for LHF in LLMs, where such misalignment
could propagate biases or reward hacking. Proposed solutions include careful reward shaping and explicit
separation of advantage and reward during training.

4.2 Learning from Human Demonstration
While reward shaping through human feedback provides an e-cient means of steering agent behavior,

it o/en captures only local preferences or corrective signals. Demonstrations complement this limitation
by o,ering richer, trajectory-level guidance that illustrates not only what outcomes are preferred but also
how to achieve them. In this way, learning from demonstration extends the strengths of feedback, providing
structured examples that can anchor RL in more complex, real-world tasks.

LHD, also known as imitation learning (IL), is a sub+eld of ML and robotics where an agent learns
to perform tasks by observing how humans (or sometimes other agents) perform them, rather than being
explicitly programmed or learning solely through trial and error [151,152]. LHD supports the HAII pillars
by allowing AI systems to observe and imitate human behavior. It moderately enhances trust as AI’s actions
re.ect demonstrated strategies and appear more reliable to users. LHD strongly improves usability, since
providing demonstrations is a highly intuitive form of teaching that lowers the barrier for human-AI
collaboration, especially for non-experts. It also moderately supports understandability, as observing the
AI’s learned behaviors can reveal patterns aligned with human actions, though the internal decision-making
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process may still be di-cult to fully interpret. By leveraging human demonstrations, LHD enables AI systems
to adopt human-aligned strategies e-ciently while maintaining practical relevance and user acceptance.

)ere are three common methods to incorporate LHD in RL: (1) Behavioral cloning (BC) that directly
mapping states to action by supervised learning [153], (2) inverse RL (IRL) to infer the reward function
based on the demonstration and use it to train the agent [154], and (3) interactive imitation learning (IIL)
where the agent actively interacts with the human during learning, instead of only passively copying static
demonstrations. )e overview of the three approaches is listed in Table 4.

Table 4: )ree approaches of LHD in RL

BC IRL IIL

Goal Directly copy expert
behavior.

Infer the reward function
that explains expert

behavior.

Improve imitation by
involving the expert
interactively during

learning.

Learning paradigm Supervised learning. Reward learning and RL.
Supervised imitation, but

with interactive expert
corrections.

Input O4ine dataset of expert
state-action pairs.

Expert trajectories (states
and actions).

Expert demonstrations
plus on-demand

corrections during
training.

Output Policy that mimics
expert.

Reward function and
derived policy.

Policy that mimics
experts more robustly.

Main motivation Simple and fast imitation.
Understand underlying
preferences; generalize

better.

Reduce compounding
errors; improve
generalization.

Advances
Implicit BC [155], active

exploration BC [156], and
counterfactual BC [157]

Addressing
computational and

memory
limitations [158],

sequential tasks [159],
and application to

LLMs [160]

Exploration e-ciency
improvement [161],

LLM-based IIL [162], and
generative adversarial

IL [163].

It should be noted that Zare et al. provided a comprehensive overview of IL, focusing on its evolution,
methodologies, and open challenges [164]. )e authors discussed the approaches of IL, such as BC, IRL,
and adversarial IL, as well as emerging areas like imitation from observation [165,166]. Key challenges
discussed include handling imperfect demonstrations and domain discrepancies like dynamics or viewpoint
mismatches [167–169]. )e paper concludes by outlining future directions, emphasizing the need for robust,
scalable methods to enhance real-world applicability in domains such as autonomous driving and robotics.
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4.2.1 Behavior Cloning
BC is essentially supervised learning. Given a set of demonstrations, D = {(s1 , a1), (s2 , a2) . . . (sn , an)}

where si , i = 1 . . . n are observed states, and ai are the corresponding actions taken by the human demon-
strator. )e agent’s goal is to learn a policy π ∶ S → A that maps states to actions.

π∗ = argminπ ∑(s ,a)∈D
∣∣π(s) − a∣∣2 (14)

)at is, BC directly learn to imitate the demonstrated behavior by minimizing the di,erence between
the agent’s chosen action and the demonstrator’s action.

Jia and Manocha presented a hybrid approach that leverages BC to initialize painting policies from
human demonstrations before re+ning them via RL in a simulated environment [170]. )is BC framework
bridges the sim-to-real gap by pre-training the agent on stroke sequences, enabling e-cient transfer to a real
UltraArm robot equipped with a RealSense camera. By combining BC with Gaussian stroke modeling and
vision-based contact force estimation (eliminating the need for physical sensors), the system achieves precise,
adaptive brush control in real-world sketching, outperforming RL-only baselines in both stroke quality and
policy convergence. )is work highlights BC as a critical enabler for scalable and realistic robotic artistry.

Zhang et al. proposed Implicit BC (IBC) combined with Dynamic Movement Primitives (DMPs) to
enhance RL for robot motion planning [155]. )e authors address the ine-ciency of traditional RL by
leveraging human demonstrations through IBC, which avoids over+tting by penalizing deviations via an
energy function rather than explicit action matching, unlike explicit BC (EBC). )e framework integrates
a multi-DoF DMP model to simplify the action space and a dual-bu,er system (demonstration and replay)
to bootstrap training. Experiments on a 6-DoF Kinova arm demonstrated that IBC-DMP achieves faster
convergence, higher success rates, and better generalization in pick-and-place tasks compared to baselines
such as the Deep Deterministic Policy Gradient (DDPG) method. )e authors also discussed IBC’s energy-
based loss and demonstration-augmented RL, bridging human expertise with RL robustness for complex
motion planning.

In another study, Xu and Zhao introduced Active Exploration Behavior Cloning (AEBC), an innovative
IL algorithm designed to overcome the sample ine-ciency limitations of traditional BC [156]. Unlike
conventional BC, which passively replicates expert demonstrations, AEBC actively enhances exploration
by integrating a Gaussian Process (GP)-based dynamics model that predicts future state uncertainties. )e
algorithm’s novel entropy-driven exploration mechanism prioritizes high-uncertainty states during training,
optimizing sample utilization through a dual objective, consisting of the standard BC’s action prediction
loss and an entropy term that maximizes the log determinant of the covariance matrices of the predicted
states. In other words, GP-guided active exploration avoids expensive online expert relabeling, and a hybrid
loss function dynamically balances imitation and exploration. Consequently, AEBC addresses BC’ core
weaknesses, compounding errors and poor sample e-ciency, making it particularly suitable for real-world
applications like robotics, where interactions are expensive. )e authors conducted benchmark problems
and found that AEBC achieved expert-level performance with much fewer interactions than traditional BC
and outperformed Advantage-Weighted Regression (AWR) in sample e-ciency [171].

Recently, Sagheb and Losey proposed Counterfactual Behavior Cloning (Counter-BC), a novel o4ine IL
method that addresses the limitations of traditional BC by inferring the human’s intended policy from noisy
demonstrations [157]. Unlike standard BC, which naively clones all actions, including errors, Counter-BC
introduces counterfactual actions that are plausible alternatives the human might have intended but did not
demonstrate perfectly. )e algorithm’s core innovation is a generalized loss function that minimizes policy
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entropy over these counterfactuals, favoring simple, con+dent explanations while remaining close to the
demonstrated data, all without requiring additional human labels or environment interactions. Evaluated
on simulated tasks and real-world robotics, Counter-BC outperforms BC and baselines in sample e-ciency
and task success, particularly with noisy or heterogeneous demonstrations. Counter-BC advances BC’s
practicality by interpreting what the human meant rather than what they did, bridging noisy data and robust
policy learning.

Echeverria et al. introduced another novel approach, in which an o4ine RL method is tailored for
combinatorial optimization problems like job-shop scheduling [172]. )e authors addressed limitations of
traditional deep RL (slow learning) and BC (poor generalization) by proposing a hybrid approach that
combines reward maximization with imitation of expert solutions. )e innovative contributions include
modeling scheduling problems as MDPs with heterogeneous graph representations, encoding actions in edge
attributes, and a new loss function balancing RL and imitation terms. )e method outperforms state-of-
the-art techniques on several benchmarks, demonstrating superior performance in minimizing makespan,
particularly for large-scale instances. )e work highlights o4ine RL’s potential for real-time scheduling with
complex constraints and suggests future extensions to other combinatorial problems.

4.2.2 Inverse Reinforcement Learning
Although BC is computationally e-cient, it faces another major limitation: the covariate shi/ prob-

lem [173,174]. When training, the agent learns from expert-generated state-action pairs. However, during
deployment, it encounters states in.uenced by its actions, potentially deviating from the training distribu-
tion [175,176]. Since the agent isn’t trained to recover from these unfamiliar states, errors compound over
time [177]. )is makes BC particularly unreliable in safety-critical applications, such as autonomous driving,
where unseen scenarios can lead to catastrophic failures [178]. One of the solutions to address covariate
shi/ing is IRL.

A recent survey comprehensively explored IRL as an approach to infer an agent’s reward function from
observed behavior rather than manually designing it for handling RL problems [179]. )e paper outlines
key challenges, including ambiguity in reward inference, generalization to unseen states, sensitivity to prior
knowledge, and computational complexity [180,181]. It categorizes foundational methods, including maxi-
mum margin optimization, maximum entropy approaches, Bayesian learning techniques, and classi+cation
or regression-based solutions [182–185]. )e survey also discusses extensions addressing imperfect or partial
observations, multi-task learning, incomplete models, and nonlinear reward functions [186–188]. )e paper
concludes by emphasizing future directions, such as enhancing e-ciency for high-dimensional spaces and
adapting IRL to dynamic real-world applications like robotics and autonomous systems. Another survey can
be found in [189].

Lin et al. proposed a computationally e-cient IRL approach to recover reward functions from expert
demonstrations while addressing the computational and memory limitations of existing methods [158].
)e authors introduced three key contributions, including a simpli+ed gradient algorithm for the reward
network, a loss function based on feature expectations rather than state-visiting frequency, and an automated
featurization network to process trajectories without manual intervention. )e method eliminates repetitive
gradient calculations and excessive storage by using streamlined feature expectations for both expert and
learner trajectories. Validated on benchmarks, such as CartPole, this approach demonstrated superior
performance in terms of average return, required steps, and robustness to noise, while reducing training time
and memory demands compared to state-of-the-art methods [190]. )e approach is particularly e,ective for
high-dimensional, continuous-state tasks with variable-length demonstrations.
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Melo and Lopes addressed the challenge of teaching sequential tasks to multiple heterogeneous IRL
agents [159]. )ey identi+ed conditions under which a single demonstration can e,ectively teach all learners
(e.g., when agents share the same optimal policy) and demonstrated that signi+cant di,erences in transition
probabilities, discount factors, or reward features render class teaching impossible. A/er formalizing the
problem, they proposed two novel algorithms: SplitTeach and JointTeach. SplitTeach combines group and
individualized teaching to ensure all learners master the task optimally, while JointTeach minimizes teaching
e,ort by selecting a single demonstration, albeit with potential suboptimal learning outcomes. Simulations
across multiple scenarios validated the theoretical +ndings, demonstrating that SplitTeach guarantees perfect
teaching with reduced e,ort compared to individualized teaching, whereas JointTeach achieves minimal
e,ort at the cost of performance. )is work bridges gaps in ML for sequential tasks, o,ering practical
solutions for heterogeneous multi-agent settings.

Wulfmeier et al. explored the application of IRL to improve IL in LLMs [160]. Unlike traditional
maximum likelihood estimation (MLE), which optimizes individual token predictions, the authors pro-
posed an IRL-based approach that optimizes entire sequences by extracting implicit rewards from expert
demonstrations. )ey reformulated inverse so/-Q-learning as a temporal di,erence-regularized extension
of MLE, bridging the gap between supervised learning and sequential decision-making. Experiments on T5
and PaLM2 models demonstrated that the proposed IRL methods outperform MLE in both task performance
(e.g., accuracy) and generation diversity. )is paper also discusses improved robustness to dataset size, better
trade-o,s between diversity and performance, and potential for more aligned reward functions in LLM
+ne-tuning. )e work positions IRL as a scalable and e,ective alternative to MLE for IL in language models.

In addition, recent e,orts include generative adversarial imitation learning (GAIL) that uses ideas
from generative adversarial networks (GANs), so the agent tries to produce behavior indistinguishable from
the demonstrator, judged by a discriminator network. Ho and Ermon introduced an early work of the
GAIL framework that directly learns a policy from expert demonstrations without requiring interaction
with the expert or access to a reinforcement signal [191]. Unlike traditional BC or IRL, which can be
ine-cient or indirect, GAIL draws an analogy to GANs. It trains a policy to match the expert’s occupancy
measure by optimizing a minimax objective between a discriminator (which distinguishes expert from
learner actions) and a policy (which aims to fool the discriminator). )e authors demonstrated that
GAIL outperforms existing model-free methods, achieving near-expert performance across various high-
dimensional control tasks, while being more robust to limited expert data. Another recent study by Zuo et al.
proposed a GIRL approach to handle imperfect demonstrations from multiple sources [192]. )e method
introduces con+dence scores to weight demonstrations, enabling the agent to prioritize higher-quality data.
Additionally, it leverages maximum entropy RL and a reshaped reward function to enhance exploration and
avoid local optima.

4.2.3 Interactive Imitation Learning
IIL is a framework where an agent learns to perform tasks by iteratively querying a human expert for

corrective feedback during execution, re+ning its policy through interactions. Unlike BC, which passively
mimics expert demonstrations without feedback, IIL actively corrects errors in real-time, improving robust-
ness to distributional shi/. In contrast to IRL, which infers a reward function from demonstrations to guide
RL, IIL directly learns a policy through supervised corrections, avoiding the need for reward estimation.
)us, IIL combines the sample e-ciency of supervised learning with interactive re+nement, bridging the
gap between BC’s simplicity and IRL’s adaptability.

Celemin et al. conducted a survey paper on IIL in Robotics, providing a comprehensive overview of
methods where human feedback is intermittently provided during robot execution to improve behavior
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online [193]. )e authors categorized IIL approaches based on feedback modalities (evaluative vs. transition
space, absolute vs. relative), the models learned (policies, state transitions, or reward functions), and auxiliary
models like task features or human feedback interpretation [117,194–196]. )ey also discuss algorithmic
properties (on/o,-policy learning), interfaces for human-robot interaction, and applications in real-world
robotics. )e paper highlighted IIL’s advantages over traditional IL and RL, such as data e-ciency and
robustness, while addressing challenges like human feedback inconsistency and covariate shi/. Other similar
surveys can be found in [164,197]. Table 5 summarizes several IIL papers reviewed in this section.

Table 5: Reviewed papers related to IIL

Paper Feedback modality Model learned Auxiliary models
Human motion
imitation with

interactive RL [161].
Transition space. Policy via Proximal

Policy Optimization.

Bayesian neural network
and priority state

initialization algorithm.

LLM-based IIL [162]. Evaluative space.
Stochastic policy via

negative log-likelihood
optimization.

Similarity-checking
mechanism.

Social robot with
generative adversarial

IL [163].
Evaluative space.

Generator via Proximal
Policy Optimization and

a discriminator using
adversarial training.

Human reward network.

IIL with human
expert [198]. Transition space.

Novice policy as an
ensemble of neural

networks.

A risk metric and a safety
threshold.

Cai et al. proposed an interactive RL framework to accelerate human motion imitation for robots by
improving exploration e-ciency and reducing training time [161]. )e method involves human experts
labeling critical states in sampled trajectories, which are then used to train a Bayesian Neural Network (BNN)
to identify and prioritize e,ective samples automatically. Additionally, a priority state initialization (PSI)
algorithm allocates training resources based on the di-culty of initial states. Experiments demonstrate that
the approach, combining human labeling termination (HLT) and PSI, signi+cantly reduces the number of
samples and training time while achieving higher imitation accuracy, compared to baseline methods.

Werner et al. introduced an IIL framework that leverages LLMs as cost-e,ective, automated teachers for
robotic manipulation tasks [162]. )e method employs a hierarchical prompting strategy to generate a task-
speci+c policy and uses a similarity-based feedback mechanism to provide evaluative or corrective feedback
during training. Evaluations on benchmark tasks demonstrated that this LLM-based IIL outperforms BC
in success rates and matches the performance of a state-of-the-art IIL method using human teachers, while
reducing reliance on human supervision [195]. While this approach o,ers a scalable, e-cient alternative to
human-in-the-loop training in robotics, the authors discussed the limitations, including LLMs’ restricted
environmental awareness and dependence on ground-truth data, and suggested future improvements with
vision-language models and real-world sensory inputs.

Recently, a method named GAILHF (Generative Adversarial Imitation LHF) was introduced to enable a
social robot to learn and imitate human game strategies in real-time two-player games by combining human
demonstrations and evaluative feedback [163]. )is framework employs a generator-discriminator architec-
ture, where the generator learns from human trajectories. At the same time, the discriminator distinguishes
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between human and robot actions, supplemented by a human reward network that predicts feedback and
reduces human burden. Experiments showed the robot successfully imitated strategies and outperformed
conventional IL and RL in game scores. Overall, this study demonstrates the e-cacy of interactive learning
for social robots and highlights the role of evaluative feedback in surpassing demonstration performance.

Kelly et al. developed HG-DAgger, an improved variant of the DAgger (Dataset Aggregation) algorithm
for IIL with human experts [198]. Unlike standard DAgger, which stochastically switches control between
the novice policy and the expert (potentially causing instability and degraded human performance), HG-
DAgger lets the human expert take full control whenever they perceive the novice entering unsafe states,
collecting corrective demonstrations only during these recovery phases. )e method also learns a risk
metric from the novice’s uncertainty using neural network ensembles and a safety threshold derived from
human interventions. Evaluated on autonomous driving tasks, HG-DAgger outperforms DAgger and BC
in sample e-ciency, safety, and human-like behavior, while providing interpretable risk estimates for
test-time deployment.

4.3 Shared Autonomy
Feedback and demonstrations together lay the groundwork for aligning agents with human intentions:

feedback supplies evaluative cues, while demonstrations encode procedural knowledge. However, both
approaches are primarily o4ine and cannot always anticipate the uncertainties and novelties of dynamic
environments. SA complements these methods by enabling real-time collaboration, allowing humans to
intervene when learned strategies fall short and letting agents assist when human control alone becomes
burdensome. )is balance ensures adaptability beyond what either feedback or demonstrations can provide
in isolation.

SA is an emerging paradigm in human-robot interaction and HAII that blends autonomous control
with real-time human input to achieve better performance, safety, and user satisfaction than either fully
manual or fully autonomous systems alone [199]. In this framework, the autonomous system and the human
operator collaboratively share control of the task, o/en dynamically adjusting their respective levels of
in.uence based on context, uncertainty, or user preference. )is approach leverages the complementary
strengths of humans, such as intuition, high-level reasoning, and adaptability, and machines like precision,
speed, and the ability to process large volumes of sensory data. Applications of SA span a wide range of
domains, including assistive robotics for people with disabilities, teleoperation in hazardous environments,
and intelligent driving systems [200–202]. By facilitating seamless human-machine collaboration, SA aims
to enhance task e-ciency, reduce cognitive load, and improve overall user experience.

SA supports the HAII pillars by combining human input with AI assistance, creating a collaborative
partnership where each agent leverages its strengths. )is strongly enhances trust, as humans retain ultimate
control and accountability while bene+ting from AI support, leading to more reliable and acceptable
outcomes. SA also strongly improves usability, since the system assists users without requiring them to
relinquish control entirely, +tting naturally into human work.ows. It moderately supports understandability,
as users can observe and in.uence AI actions, gaining partial insight into its reasoning, though full
transparency may still be limited. By e,ectively balancing human guidance with AI autonomy, SA enables
e-cient, user-centered decision-making that leverages the strengths of both humans and machines.

SA approaches can be broadly categorized into classical methods and learning-based methods, partic-
ularly those leveraging RL. Classical SA typically relies on manually designed control blending strategies,
where the system assists the user according to prede+ned rules or heuristics, for instance, by combining user
preferences on autonomous vehicle service attributes [203]. While these methods o,er predictability and
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are o/en easier to verify for safety-critical applications, they lack .exibility and personalization and cannot
easily adapt to new tasks, user preferences, or changes in the environment without manual retuning.

In contrast, RL-based SA frameworks aim to learn optimal assistance policies directly from data, o/en
through human demonstrations, real-time feedback, or preference learning. )is enables the system to
dynamically infer user intent, personalize assistance based on individual skill or context, and continuously
improve through interaction [204–206]. Although RL-based methods face challenges related to data e--
ciency, safety, and interpretability, they hold signi+cant promise for creating more adaptive, user-centered
SA systems that generalize beyond the scenarios anticipated by classical designs [207]. )e comparison is
summarized in Table 6.

Table 6: )e comparison between classical and RL-based SA

Classical SA RL-based SA

Control blending strategy Rule-based, prede+ned mixing
(e.g., linear blending).

Learned from data or interaction
(adaptive blending).

Human model Handcra/ed assumptions (e.g.,
+xed goals, behavior models).

Learned from demonstrations,
corrections, or preferences.

Adaptability Static and task-speci+c. Dynamically adapts to user skill,
task di-culty, or context.

Policy design Manually designed or based on
classical control theory.

Learned via trial and error or
human-guided reinforcement.

Goal inference O/en assumed known or manually
speci+ed.

Inferred from partial input using
learned latent representations.

Personalization Rare or limited.
Personalization through

user-speci+c reward models or
policies.

Uncertainty Deterministic or basic probabilistic
models.

Bayesian or ensemble-based
exploration and uncertainty

estimation.

Performance over time Performance remains +xed unless
re-tuned.

Improves with interaction and user
feedback.

Application examples
Shared control of wheelchairs,

surgical robots (with +xed
blending).

Preference-based RL, interactive
RL with goal inference,

assist-as-needed exoskeletons.

Limitations Hard to generalize across
users/tasks, in.exible.

May require more data and
training time.

Advances

Intelligent driving systems [200],
assistive robotics [201],
teleoperation [202], and

autonomous vechile [203].

Agent without prior knowledge of
environments [208,209] and safety

constraints [210,211].

In one of their early works, Reddy et al. presented a model-free deep RL framework for SA, where
a semi-autonomous agent assists human users in real-time control tasks without prior knowledge of the
environment dynamics, user policy, or goal representation [208]. )e method combines human input with
RL by embedding user actions into the agent’s observations and using DQN to balance task optimization
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with adherence to user commands. Speci+cally, a behavior policy selects actions close to user inputs while
ensuring they meet a performance threshold. In their work, experiments in simulated and real-world tasks
demonstrated that the approach improved task success rates and reduced crashes compared to unassisted
human or autonomous control. In addition, the framework was adapted to diverse user behaviors and could
leverage additional structure (e.g., known goals) when available, o,ering a .exible solution for human-robot
collaboration in complex, uncertain environments.

In another work, Scha, and Walter introduced a residual policy learning framework for SA in
continuous control tasks, enabling collaboration between humans and robots without restrictive assumptions
of prior knowledge of the environment dynamics, goal space, or human intent [209]. )e method leverages
model-free deep RL to train an agent that minimally adjusts human actions to satisfy goal-agnostic
constraints, while preserving the human’s control authority. By framing the problem as a constrained MDP
and using residual policy learning, the agent learns corrective actions added to human inputs, ensuring safety
and e-ciency. )is approach generalizes across tasks and users, highlighting its potential for real-world
applications where human-robot collaboration is essential.

Furthermore, Li and co-workers proposed a human-in-the-loop RL method with policy constraints to
enhance shared autonomous systems where humans and agents collaborate on tasks [210]. )e approach
addresses key challenges in RL, including the high cost and safety risks associated with exploration during
training, as well as the potential for human errors during execution. By incorporating human prior
knowledge as policy constraints, the method accelerates training by guiding agents’ exploration and ensures
safety during testing through an arbitration mechanism that overrides unsafe human inputs. Experiments
in a Lunar Lander simulation demonstrated that the proposed approach improved convergence speed,
reduced risky behaviors, and increased task success rates compared to standard RL methods, highlighting
its e,ectiveness in balancing e-ciency and safety in human-machine systems.

For a speci+c application, Backman et al. presented a SA approach to assist novice and expert pilots
in safely landing unmanned aerial vehicles (UAVs) under challenging conditions, such as limited depth
perception and ambiguous landing zones [211]. )e system consists of a perception module that encodes
stereo RGB-D camera data into a compressed latent representation and a policy module trained using
RL with simulated users to infer pilot intent and provide control inputs. )e assistant, trained solely in
simulation, was validated in a physical user study (n = 28), signi+cantly improving task success rates without
prior knowledge of the environment or pilot goals. )e study demonstrated that the assistant enabled
participants of all skill levels to perform at or above the pro+ciency of the most experienced unassisted pilots,
while reducing workload and improving e-ciency.

4.4 Human-in-the-Loop Querying
By combining the strengths of feedback and demonstrations, SA enables humans and AI to coordinate

e,ectively in real time. Yet, smooth collaboration also requires agents to recognize when human input is
most valuable. HLQ complements SA by shi/ing the interaction from reactive intervention to proactive
engagement: instead of waiting for humans to take control, the agent can strategically request guidance at
critical moments. Together, these approaches reduce cognitive burden, enhance trust, and ensure that human
expertise is applied precisely where it has the greatest impact.

HLQ is an approach within HAII where human users actively engage with AI systems by issuing
queries, providing feedback, or validating outputs. Rather than operating purely autonomously, the AI
system incorporates human expertise and preferences to guide or re+ne its decision-making process [212].
)is interactive paradigm is particularly useful in complex or high-stakes applications, such as medical
diagnosis, scienti+c discovery, or content moderation, in which purely automated models might struggle with
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ambiguous cases or domain-speci+c nuances [213]. By enabling iterative querying and feedback, human-in-
the-loop systems can achieve higher accuracy, improve transparency, and align outcomes more closely with
human values and expectations [214].

HLQ supports the HAII pillars by integrating human feedback directly into AI decision-making
through interactive queries. )is strongly enhances trust, as humans can validate, correct, or re+ne AI
actions, ensuring outcomes align with expectations. HLQ also strongly improves usability, allowing humans
to guide AI behavior dynamically and intuitively within their natural work.ow. It moderately supports
understandability; the process of giving feedback and seeing the AI’s response helps humans build a mental
model of its reasoning, though full transparency into its internal logic may not be achieved. By incorporating
humans in the loop, HLQ ensures that AI systems remain accountable, adaptive, and aligned with user intent.

In the context of RL, HLQ has emerged as a powerful method to augment traditional reward-driven
learning [215]. Instead of relying solely on environmental rewards or prede+ned objectives, RL agents
can actively query humans to receive additional feedback about speci+c actions or states. )is can take
the form of explicit scalar rewards, natural language explanations, or preference comparisons, e,ectively
shaping the agent’s behavior toward more desirable policies [216,217]. Such integration not only speeds up
convergence in environments where rewards are sparse or delayed but also helps embed human norms
and safety considerations into the learning process. As a result, human-in-the-loop querying bridges the
gap between purely autonomous agents and HCAI systems, fostering more trustworthy and adaptable
decision-making [218].

While HLQ and LHF both aim to integrate human knowledge into AI systems, they di,er in how
and when human input is collected and applied. LHF typically involves passively receiving evaluations or
preferences from humans a/er the AI generates outputs, such as preference ranking, demonstration, or
critique, which are then used to adjust the model. In contrast, HLQ is a more proactive process, where
the AI agent initiates interaction by selectively querying humans to resolve uncertainty or gather targeted
information during training or inference. )is active querying enables the AI to focus human e,ort on
the most ambiguous or impactful decisions, potentially improving sample e-ciency and alignment with
human intent. Both approaches enhance human-AI collaboration, but HLQ is distinguished by its dynamic,
interactive nature, where the AI system itself drives the request for human guidance.

In RL, several techniques implement HLQ to incorporate human knowledge e-ciently. One common
method is active preference learning, where the agent presents pairs of trajectories or actions and queries the
human to indicate which is preferred, allowing the agent to learn a reward model that better re.ects human
values [219,220]. Another approach involves reward shaping via queries, where the agent asks for additional
scalar rewards or corrections when encountering states with high uncertainty or con.icting signals from the
environment [221]. Critique-based learning allows humans to provide natural language or symbolic feedback
on speci+c behaviors, which the agent can translate into policy adjustments [222]. Additionally, interactive
policy adjustment methods let agents query humans during exploration to avoid dangerous or unethical
actions, supporting safer learning in real-world tasks [223]. Together, these techniques help RL agents
e-ciently allocate limited human input to the most informative parts of the state or action space, improving
learning speed, safety, and alignment with human intent. We will focus on reviewing active preference
learning and reward shaping via queries, which have recently bene+ted from LLMs. )e comparison between
the two techniques is listed in Table 7.



30 Comput Mater Contin. 2025

Table 7: )e comparison between active preference learning and reward shaping via querying

Active preference learning Reward shaping via querying

Querying type
Requests human to compare pairs of

trajectories or behaviors (relative
preference).

Requests human to provide scalar
feedback or corrections on speci+c
states/actions (evaluative feedback).

Human input Relative preference judgments
(“Which behavior do you prefer?”).

Scalar rewards or corrections (“)is
action is good/bad”).

Goal Learn or re+ne a reward model
representing human values.

Directly shape or augment the
reward signal to guide learning.

Feedback timing Typically a/er observing pairs of
behaviors.

Typically at uncertain or critical
decision points.

Strengths
Good for complex, subjective, or
hard-to-specify rewards; humans

better at comparisons.

Simple and intuitive feedback; speeds
up learning in sparse or noisy reward

environments.

Limitations
Can be computationally expensive;

requires generating meaningful
behavior pairs.

Depends on consistent and reliable
human scalar feedback; may miss

nuanced preferences.

Use of LLMs

LLMs generate informative query
pairs, predict human preferences,

and provide natural language
explanations or justi+cations.

LLMs parse natural language
feedback, ask clarifying questions,
and generalize shaping rewards to

unseen states.

4.4.1 Active Preference Learning
Active preference learning, also known as learning from pairwise comparisons, is an HLQ approach

where the agent actively requests humans to compare short trajectories, state-action sequences, or outcomes
by asking questions such as “Which do you prefer?” Rather than requiring humans to explicitly design
a complete reward function, this method leverages relative human judgments to +t a reward model that
more accurately captures human values and preferences. )is approach is highly sample-e-cient since it
focuses human e,ort on simple comparison tasks instead of complex reward engineering. Additionally,
active preference learning scales well to complex domains, including robotics, video games like Atari, and
other simulated environments, making it a popular and e,ective technique for aligning RL agents with
human intentions.

Ge et al. presented a method for designing reward functions in RL for autonomous driving navigation
using active preference learning to align rewards with human intentions [224]. )e method addresses
challenges in reward design and enhances policy learning by better capturing human preferences. Traditional
reward functions o/en fail in complex, continuous state spaces, resulting in suboptimal policies. )e pro-
posed method leverages human preferences to iteratively re+ne reward weights, using mutual information
to generate informative queries and the No-U-Turn Sampler (NUTS) for e-cient belief model updates.
Experiments in the CARLA simulation environment demonstrated that this approach signi+cantly improves
the success rate of navigation tasks (up to 60%) compared to baseline methods, enabling autonomous
vehicles to navigate between random start and end points using only forward vision, without reliance on
high-precision maps or prede+ned routes.



Comput Mater Contin. 2025 31

When combined with LLMs, active preference learning becomes even more powerful and e-cient.
LLMs can help design smarter queries by generating trajectory pairs that are more informative, diverse,
or challenging, rather than relying on random sampling; this ensures each human comparison provides
maximal learning value. Beyond query generation, LLMs can also act as preference predictors: once some
human preference data is collected, the LLM can generalize and predict likely human choices for new
trajectory pairs, reducing the need for frequent human input and improving sample e-ciency. Additionally,
LLMs can produce natural language justi+cations explaining why certain behaviors might be preferred,
which not only aids human understanding but also encourages humans to provide more consistent and
thoughtful feedback. Together, these enhancements make the querying process more strategic, scalable, and
aligned with human values

Muldrew and co-workers employed active preference learning to enhance the e-ciency of +ne-tuning
LLMs using human or AI feedback, speci+cally with Direct Preference Optimization (DPO) [225]. Unlike
traditional approaches that collect preference labels upfront, this approach iteratively selects the most
informative prompt-completion pairs for labeling, based on predictive entropy and preference certainty, to
optimize the use of limited labeling resources. On the other hand, this method avoids the complexity of RL
with human feedback and leverages DPO’s implicit reward model, demonstrating practical advantages in
alignment and e-ciency.

In another study, Mehta et al. introduced an approach of sample-e-cient preference alignment in LLMs
using active exploration, optimizing human feedback collection to align LLMs with user preferences [226].
)e authors formalized the problem as an active contextual dueling bandit task, where an algorithm actively
selects prompts and completions for human feedback to maximize learning e-ciency. )eir approach
leverages a contextual Borda function to reduce preference-based feedback to a single-action optimization
problem, with theoretical guarantees on polynomial worst-case regret. )e method is extended to LLMs via
DPO, with online and o4ine variants that use dropout-based uncertainty estimation to prioritize informative
data points.

Mahmud et al. introduced MAPLE (Model-guided Active Preference Learning), a framework that
integrates LLMs with Bayesian active learning to e-ciently infer human preferences from natural language
feedback and pairwise trajectory rankings [227]. MAPLE leverages LLMs to model preference distributions
and employs a language-conditioned active query selection mechanism to prioritize informative and easy-
to-answer queries, reducing human e,ort. )e framework combines linguistic feedback (e.g., explanations)
with conventional preference data (e.g., trajectory rankings) within a Bayesian framework, enhancing
interpretability and sample e-ciency. Additionally, MAPLE includes LLM-guided weight sampling, oracle-
guided active query selection, and modular preference functions for adaptability.

Similarly, Wang et al. presented a novel framework that enhances preference-based RL by leveraging
crowdsourced LLMs as synthetic teachers [228]. Unlike traditional preference-based RL that relies on
extensive human feedback and is resource-intensive, this framework uses multiple LLM agents to generate
diverse evaluation functions for robot trajectories, aggregating their preferences via Dempster-Shafer )eory
for nuanced and adaptive feedback [229,230]. A human-in-the-loop module further re+nes these evaluations
based on user inputs, enabling personalized robot behaviors in human-robot interaction scenarios.

4.4.2 Reward Shaping via Querying
Reward shaping via querying is a human-in-the-loop approach where an RL agent actively requests

scalar feedback or corrective signals from humans during the learning process. Instead of relying exclusively
on prede+ned or sparse environmental rewards, the agent strategically queries humans at uncertain, risky,
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or high-impact decision points—asking questions. )e human-provided feedback is then used to directly
augment or reshape the reward signal, e,ectively steering exploration and policy updates in a way that aligns
better with human goals and safety constraints. )is technique is particularly valuable in complex or real-
world environments where designing a fully accurate reward function is di-cult, and timely human input
can prevent unsafe or undesirable behaviors. By focusing human e,ort where it is most informative, reward
shaping via querying helps improve both learning e-ciency and alignment with human intent.

When combined with LLMs, reward shaping via querying becomes even more expressive and e-cient.
Rather than limiting human input to scalar values alone, agents can actively solicit free-form natural language
feedback, which LLMs parse and translate into actionable shaping signals or policy updates. LLMs also enable
agents to ask clarifying follow-up questions when human feedback is ambiguous or incomplete, ensuring that
the guidance is correctly interpreted. Additionally, by leveraging their extensive pretrained knowledge, LLMs
can help generalize shaping rewards to similar but unseen situations, thereby reducing the number of direct
human queries required. Together, these capabilities make reward shaping via querying not only more data-
e-cient but also better equipped to capture subtle preferences, safety considerations, and domain-speci+c
nuances that are di-cult to express through numeric rewards alone.

Chan et al. introduced Attention-Based Credit (ABC), a reward shaping method that implicitly queries
the transformer architecture of a reward model from LLMs to densify sparse human feedback [231]. Instead of
relying only on a +nal scalar reward, ABC extracts the reward model’s attention maps, e,ectively requesting
which tokens most in.uenced its judgment, and redistributes the reward accordingly. )is process acts as an
automated query mechanism, where the attention weights serve as +ne-grained, model-generated feedback,
similar to potential-based shaping. By leveraging the LLMs’ built-in attention dynamics, ABC provides
token-level credit assignment without additional human queries or computational overhead.

Additionally, a fair and stable RL was introduced for optimizing LLMs by dynamically balancing
diverse rewards, such as factuality, completeness, and harmlessness, according to human or AI-generated
feedback [232]. )is method implicitly queries the reward landscape through mirror descent-based weight
updates, treating the composite reward as a dynamic weighted sum to minimize disparity and maximize
stability across con.icting objectives. By framing the problem as a max-min optimization inspired by dis-
tributionally robust optimization [233], the method automatically adjusts reward weights without gradients,
ensuring balanced policy improvements. Experiments on dialogue, question/answer, and safety tasks showed
that this RL approach outperforms +xed-weight baselines and avoids over+tting to dominant rewards. While
not requiring explicit queries, the approach functionally mimics internal querying by iteratively probing and
rebalancing reward signals, o,ering a scalable alternative to manual reward shaping.

Wu et al. presented an RL framework that enhances LLM training by leveraging +ne-grained human
feedback to create dense, multi-category reward signals [234]. )is approach is closely related to reward
shaping via querying, as it relies on querying external sources (e.g., humans or auxiliary models like
Perspective API) to provide intermediate rewards during generation. Moreover, RL with +ne-grained human
feedback extends traditional reward shaping by structuring feedback into speci+c error types (including
factual inaccuracies, irrelevance, and toxicity) and assigning rewards at granular levels (per sentence or sub-
sentence), rather than relying on a single holistic score. While o,ering automated feedback, the +ne-grained
human feedback mechanism emphasizes human-annotated feedback for training specialized reward models.
)is framework addresses limitations of sparse feedback in RL, providing a more precise way to align LLMs
with human preferences, albeit at a higher computational cost.
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4.5 Explainable Reinforcement Learning
LHF, LHD, SA, and HLQ collectively form a powerful toolkit for aligning and adapting AI behavior

with human needs. Still, their e,ectiveness hinges on human understanding: users must be able to interpret
why an agent requests input, follows certain strategies, or overrides prior preferences. XRL complements all
prior methods by providing transparency, making the agent’s reasoning process accessible and actionable.
In doing so, XRL strengthens the feedback loop, empowering humans to deliver more precise feedback,
demonstrations, or answers to queries, and fostering mutual trust in SA.

XRL is a complementary approach within human-AI interaction that focuses on making an agent’s
decision-making process transparent and interpretable to human users [235,236]. Rather than actively
querying humans for feedback, XRL helps humans understand why an agent chose certain actions or
followed speci+c policies by generating explanations, visualizations, or natural language rationales. )is
transparency enables humans to build trust in the system, identify potential .aws or unsafe behaviors, and
provide more informed guidance or corrections when necessary. While XRL does not directly shape the
learning process through feedback, it plays a vital role in fostering collaboration, accountability, and e,ective
oversight in human-in-the-loop systems.

XRL supports the HAII pillars by providing interpretable explanations for decisions made by RL
agents. )is strongly enhances trust, as users can verify that AI actions align with expectations and goals,
making the system more reliable and accountable. XRL provides foundational support for usability; the
insights from explanations can help users interact with the AI more e,ectively, though this depends on the
explanations being clear and concise to avoid adding cognitive load. It strongly supports understandability, as
explanations reveal the rationale behind AI actions, highlighting the factors and strategies driving behavior.
By making RL agents’ decision-making transparent, XRL facilitates safe, informed, and user-aligned human-
AI collaboration.

In RL, HAII through XRL is typically implemented by designing agents that can produce inter-
pretable representations of their internal policies, value functions, or decision pathways [237,238]. Common
techniques include visual explanations such as saliency maps that highlight in.uential states or features,
counterfactual explanations showing how behavior would change under di,erent circumstances, and natural
language rationales that describe why speci+c actions were chosen. Other methods extract symbolic rules
or simpli+ed models summarizing agent behavior, making it easier for humans to inspect and understand
complex policies. )ese mechanisms transform opaque, black-box learning processes into transparent
models that support human users in debugging, supervising, and re+ning agent behavior.

While both querying-based methods and XRL are part of the broader landscape of HAII, they serve
distinct yet complementary roles. Query-based methods, including active preference learning and reward
shaping via querying, involve the agent actively requesting human feedback during learning, that is, using it
to directly adjust the reward model or policy. In contrast, XRL focuses on the agent explaining its reasoning
to the human, enabling the human to interpret and potentially correct or re+ne the agent’s behavior. On the
other hand, querying-based methods directly shape learning by incorporating human judgments, whereas
XRL indirectly supports alignment by equipping humans with insight into why the agent acts as it does.
Together, these approaches form a synergistic loop: querying leverages human input to re+ne agent behavior,
and XRL helps humans provide better, more context-aware feedback by making the agent’s internal processes
transparent. )e comparison is shown in Table 8.
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Table 8: )e comparison between querying-based methods and XRL

Querying-based methods XRL

Agent role Agent actively queries humans for
feedback to guide learning.

Agent explains its decisions, policies,
or reasoning to humans.

Human role
Provide direct feedback

(comparisons, scalar rewards,
corrections).

Interpret explanations; supervise,
debug, or re+ne the agent.

Primary goal Improve or shape learning directly by
incorporating human feedback.

Increase transparency, trust, and
human understanding.

Interaction )ow Human feedback→modi+es reward
model or policy.

Agent’s internal reasoning→
presented to human.

E*ect on learning Direct: changes the reward or policy
updates.

Indirect: helps humans give better or
safer feedback.

Complementary Uses human input to align behavior. Helps humans understand behavior
to o,er better input.

A recent survey highlighted the critical role of XRL in HAII by emphasizing how explanations can
bridge the gap between opaque RL agents and human users [239]. )e authors argued that understanding
an agent’s decisions, such as why it took a speci+c action or how it learned its policy, is essential for building
trust, enabling human oversight, and facilitating real-world deployment. )eir taxonomy categorizes XRL
methods based on how they support human interpretability: feature importance provides immediate,
action-level insights, the learning process and MDP reveal training dynamics and reward structures, and
policy-level o,ers long-term behavioral summaries [240–243]. All of these help humans diagnose, validate,
and collaborate with AI systems. )e paper also critiques current evaluation practices, noting that many
methods rely on visualizations rather than human-centered metrics like comprehensibility, actionability, or
cognitive load. By framing XRL as a tool for enhancing human-AI collaboration, the survey underscores its
potential in high-stakes domains like healthcare, autonomous driving, and robotics, where human trust and
intervention are paramount.

In another study, Raees et al. systematically reviewed the evolution of HAII, shi/ing the focus from
XAI to more active and collaborative forms of Interactive AI [244]. It highlights the limitations of current
research, which o/en prioritizes system performance and passive explanations over empowering users
with agency, such as the ability to contest, adapt, or co-design AI systems [245]. )e analysis identi+es
gaps in practical implementations, particularly in high-stakes domains like healthcare, and underscores the
dominance of low-risk applications where interactivity is more tolerated [246–248]. Key +ndings reveal that
while transparency and user experience are central to HCAI, few studies enable meaningful user control over
AI mechanics, with Interactive Machine Learning (IML) emerging as a promising approach for fostering
collaboration [249]. )e paper advocates for balancing AI autonomy with human agency, emphasizing the
need for participatory design, multi-modal interfaces, and real-world experimentation to advance HAII
beyond theoretical proposals.

A recent study used deep RL to design a resource allocation mechanism that promotes sustainable
cooperation in a multiplayer trust game, where participants must reciprocate investments to maintain a
shared pool of resources [250]. In this study, the RL agent learns a dynamic policy that balances fairness and
e-ciency, temporarily sanctioning defectors while redistributing resources more equally when the pool is
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abundant. By analyzing the agent’s behavior, the authors derived a simpler, explainable heuristic that mimics
the RL policy and is preferred by human players for its transparency. )e results demonstrated that AI-driven
mechanisms can outperform traditional baselines in fostering long-term cooperation, with implications for
real-world applications like welfare systems or environmental management.

Moreover, Gebellí et al. proposed a framework for Personalized Explainable Robots Using LLMs, focus-
ing on enhancing human-robot interaction (HRI) through XAI grounded in )eory of Mind (ToM) [251].
)e system reconciles the robot’s internal model with its estimate of the human’s mental model to generate
tailored explanations for users. Notably, this study uses LHF to +ne-tune LLMs for deeper personalization,
which aligns with XAI principles in RL by adapting explanations based on iterative user interactions.
)e framework demonstrates practical applications in a hospital patrolling robot, showcasing adaptive
explanations for diverse user types (e.g., non-active, active, or returning users), emphasizing the role of XAI
in dynamic, real-world RL environments where transparency and user trust are critical.

5 Case Studies
)is section presents three case studies demonstrating the practical application of newly developed HAII

algorithms in RL. )e +rst study addresses the critical gap between theoretically optimal AI policies and their
practical adoption, focusing on farmers who rely on experiential knowledge. While RL can generate “trust-
agnostic” policies that outperform expert strategies in simulation, these solutions o/en prioritize numerical
e-ciency over practical feasibility, leading to low user acceptance. To bridge this gap, we introduce a novel,
quantitative trust model that translates subjective farmer con+dence into a computable score integrated
directly into the RL objective. By framing the problem as multi-objective optimization, we pioneer a method
for deriving a “trust-aware” policy that Pareto-dominates other strategies, successfully balancing high
agricultural productivity with user trust to enhance real-world deployability. )is case directly veri+es the
theoretical pillar of trust, demonstrating that explicit modeling of human con+dence is necessary for practical
acceptance of AI policies. It also expands the usability pillar, showing that usability is not limited to interface
design but also encompasses the alignment of AI optimization with human decision-making practices.
Finally, it reveals limits to understandability, since while farmers could observe how trust scores in.uenced
outcomes, the internal policy trade-o,s of the RL system remained di-cult to interpret, highlighting the
need for improved transparency in multi-objective AI.

)e second case study integrates ethical reasoning into robotic motion planning for a medical clinic,
motivated by the need to ensure autonomous systems operate safely in high-stakes environments. )e novel
contribution is a hierarchical framework that formalizes ethical norms within a POMDP as distinct hard and
so/ constraints. Deontological obligations (hard constraints) are mapped to LTL for guaranteed compliance,
while utilitarian permissions (so/ constraints) are encoded into the reward function to incentivize adaptive
behavior. )is hybrid approach ensures rigorous adherence to critical safety rules while permitting .exibility
on secondary guidelines, providing a robust methodology for embedding ethical decision-making into
RL under uncertainty. )e case strongly veri+es the trust pillar, showing that explicit ethical guarantees
are essential for human reliance on AI in safety-critical contexts. It expands the usability pillar, as the
integration of ethical reasoning demonstrates that usability in medical environments depends not only on
e-ciency and performance but also on compliance with human moral expectations. Finally, it enhances
understandability, since the separation of hard and so/ constraints provides a transparent logic for why
certain motions are strictly prohibited while others remain adaptable, making the AI’s decision-making
process more interpretable to clinicians.

)e third study quantitatively investigates the evolution of human trust in AI through a multi-armed
bandit experiment. )e motivation is to move beyond subjective surveys by developing a quantitative,
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behavioral model of how trust evolves through interaction, which is key to designing AI systems that can
calibrate user trust e,ectively. )e novelty of this case study is the application of an RL paradigm to model
the human’s internal decision-making process itself. We frame human trust as a value function over states
of “following” or “ignoring” AI advice, which is updated based on received rewards. )is computational
model, +tted to experimental data, provides a novel lens to objectively track and predict trust dynamics over
time. )e case veri+es the trust pillar by demonstrating that trust can be rigorously quanti+ed as a dynamic,
learnable function, o,ering predictive power beyond subjective measures. It also expands the usability pillar,
since modeling trust dynamics allows for adaptive AI designs that calibrate assistance in line with user
con+dence, thereby improving sustained interaction quality. Finally, it contributes to understandability, as
the trust value function makes the evolution of human-AI reliance explicit and interpretable, providing
researchers and practitioners with a structured framework to anticipate and manage user behavior over time.

5.1 Farmer Trust Model in Optimal Agricultural Management
Precision agriculture increasingly integrates advanced technologies, such as remote sensing, UAVs, and

ML, to address global food shortages [252]. RL, in particular, has been applied alongside crop simulators
to optimize agricultural management practices, including irrigation and fertilization strategies [253–255].
)ese RL frameworks typically aim to maximize crop yield while minimizing resource use (e.g., water and
nitrogen) and environmental impacts, such as nitrate leaching.

In this case study, we focused on maize crops in Iowa, where conventional farming practices rely
primarily on rainfall rather than irrigation. To optimize fertilization strategies, we employed Gym-DSSAT,
a crop simulator serving as a virtual agricultural environment, to approximate system dynamics and predict
crop yield [256]. )e simulator models 28 internal state variables, capturing diverse crop growth stages and
environmental conditions. Building on our prior work [4,255,257], we framed this problem as a POMDP
to account for real-world agricultural complexity and variability. From these, we selected 10 key variables
(Table 9) as primary observations. Consequently, we implemented a GRU-based DQN approach, as detailed
in Section 3.2, to derive optimal agricultural strategies (policies).

Table 9: State variables of the agricultural environment used in this study as observations

Variables De,nitions
cumsumfert Cumulative nitrogen fertilizer applications (kg/ha)

dap Days a/er planting
istage DSSAT maize growing stage
pltpop Plant population density (plant/m2)

rain Rainfall for the current day (mm/d)
sw Volumetric soil water content in soil layers (cm3 [water]/cm3 [soil])

tmax Maximum temperature for the current day (○C)
tmin Minimum temperature for the current day (○C)

vstage Vegetative growth stage (number of leaves)
xlai Plant population leaf area index

)e action space consists of discrete nitrogen application rates Nt on day t, ranging from 0 to 200 kg/ha
in 10 kg/ha increments. )e simulator utilizes soil data from an experimental +eld in Iowa and 1999 weather
conditions to predict daily nitrate leaching Lt and end-of-season corn yield Y. Accordingly, we adopted the
following reward function [4].
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Rt = { w1Y −w2Nt −w3Lt at harvest−w2Nt −w3Lt otherwise (15)

where the weight coe-cients include w1 = 0.07087, w2 = 0.39, w3 = 1.95.
While RL-generated policies outperformed Gym-DSSAT’s expert policy in agricultural outcomes,

they o/en prioritized theoretical agricultural optimization over farmers’ practical needs and experiential
knowledge. To bridge this gap, we developed a trust model that quanti+es farmers’ con+dence in AI-driven
strategies. By integrating farmers’ behavioral patterns with publicly available agricultural data, our model
enables the adaptation of management solutions to better align with real-world expectations. In this case
study, we implemented a three-dimensional trust framework evaluating: (1) technical ability, (2) system
benevolence, and (3) operational integrity [258]. )is approach yields a comprehensive trust score (Ts)
calculated as:

Ts = Tability × Tbenevolence × Tintegrity (16)

where Tintegrity = 1.0, assuming that the RL agent developed by a research group with outstanding expertise
in the +eld delivers AI-generated policies with equivalent transparency and fairness.

Within trust theory, ability is de+ned as the collection of skills, competencies, and traits that empower
an entity to in.uence outcomes in a speci+c domain, underscoring the critical role of demonstrated
pro+ciency [258]. )e ability of the RL agent’s recommended fertilization strategy was assessed by comparing
its performance-in terms of yield output, total nitrogen application (∑Nt), and application frequency (FF)-
against 1999 U.S. agricultural benchmarks in Eq. (17): 8649 kg/ha average corn yield, 213 kg/ha average
nitrogen application, and the typical 1–3 applications per growing season [259,260].

Tability = Y
8649

× 213 + 1
∑Nt + 1

× 2
(∣FF − 2∣ + 2) (17)

Benevolence in trust theory re.ects the trustee’s perceived altruistic intentions [258]. While the original
reward function in Eq. (15) penalizes nitrate leaching, AI policies may over-prioritize environmental bene+ts,
potentially raising farmer concerns about whether AI’s decision-making aligns with their interests. Using a
benchmark (0.26 kg/ha total leaching) from the expert policy provided by Gym-DSSAT, we assess deviations’
impact on perceived benevolence in Eq. (18), as both higher and lower values may a,ect trust in the RL
agent’s fertilization strategy.

Tbenevolence = 1 − ∣∑ Lt − 0.26
0.26

∣ (18)

Consequently, this case study addresses the dual challenge of optimizing both expected returns
(Eq. (15)) and decision-making trustworthiness (Eq. (16)). Recognizing the inherent trade-o, between
agricultural productivity and trust, we employ multi-objective RL combining POMDP and GRU-based
DQN to identify the Pareto front and determine the optimal policy [261]. We distinguish between two
optimal policies: (1) the trust-aware policy that balances both objectives, and (2) the trust-agnostic policy that
solely maximizes expected returns. Table 10 compares their agricultural outcomes against the Gym-DSSAT
expert policy.
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Table 10: Agricultural outcomes following di,erent nitrogen fertilization strategies

Trust-aware
optimal policy

Trust-agnostic
optimal policy Expert policy

Total reward 583 585 568
Corn yield (Kg/ha) 9165 9248 9248

Nitrogen fertilizer amount (Kg/ha) 170 180 224
Nitrate leaching (Kg/ha) 0.14 0.09 0.26

Number of fertlizer applications 2 7 1
Trust score 0.715 0.012 0.678

)e table shows that the trust-agnostic optimal policy achieves the highest reward among the three
strategies. However, it records the lowest trust score because it does not consider farmers’ trust. )is low
trust mainly results from its frequent, small-dose fertilization schedule aimed at minimizing nitrate leaching,
which substantially increases the farmers’ workload and labor hours. In comparison, the expert policy adopts
a di,erent approach. By limiting the number of fertilizer applications and maintaining nitrate leaching at
baseline levels, it attains a high trust score in the simulation. Yet, its greater fertilizer use and higher nitrate
leaching reduce overall performance, yielding the lowest reward among the three.

)e trust-aware optimal policy o,ers a more balanced solution. It reaches a reward similar to that of the
trust-agnostic optimal policy while also achieving a higher trust score than the expert policy. )is outcome
arises from careful regulation of both the timing and amount of fertilizer applied. Fig. 6 provides a detailed
view of the fertilization schedule in conjunction with precipitation patterns.

Figure 6: Precipitation during the simulation and fertilization under di,erent policies
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Fig. 6 highlights the di,erences in fertilization strategies. )e trust-agnostic policy relies on frequent
but small applications, concentrating most fertilizer in August, the month with the lowest rainfall in 1999. By
avoiding applications during wetter periods, it e,ectively minimizes nitrate leaching. In contrast, the trust-
aware policy takes a simpler approach, applying a large dose at planting followed by a second application
three months later. )is design reduces farmers’ workload, though it is less focused on avoiding rainy days.
Despite these di,erences, the results demonstrate that the trust-aware optimal policy successfully balances
high rewards with farmers’ trust. Its strategy manages to meet both objectives e,ectively, o,ering a practical
and e-cient approach to fertilization management.

5.2 Ethical Constraints in Robotics Motion Planning
AI ethics involves the study of moral principles and methodologies designed to promote the responsible

creation and deployment of AI, especially as AI systems grow increasingly sophisticated. A central challenge
lies in developing ethical AI agents that adhere to human values, preferences, and limitations while making
morally sound decisions—identifying ethical dilemmas, assessing alternatives, and acting in accordance
with established moral standards [262]. )e ethical framework o/en incorporates normative concepts such
as obligation, prohibition, and permission, which are deeply rooted in legal theory and formalized ethical
systems [263]. )ese principles are further shaped by foundational ethical theories, including utilitarianism
and deontology, each o,ering distinct perspectives on morality, justice, and human rights. Utilitarianism
evaluates actions based on their outcomes, prioritizing the greatest good for the greatest number [264]. In
contrast, deontology assesses the morality of actions by their alignment with prede+ned rules and duties,
independent of their consequences [265].

Obligations represent positive normative imperatives, typically articulated as statements about what
ought to be done, whereas prohibitions function as their inverse by specifying what must not occur. In
contrast, the notion of permission is more nuanced and holds signi+cant importance across various ethical
and normative frameworks. A key distinction in classifying permissions lies in di,erentiating between weak
and strong permissions [266]. Weak permission implies that an action is allowed unless explicitly forbidden,
operating on a default assumption of permissibility. Conversely, strong permission applies only when a
normative system explicitly approves an action [266]. Furthermore, strong permissions may also de+ne
exceptions that supersede existing obligations or prohibitions, introducing .exibility into rigid normative
structures [267].

We reclassi+ed and reformulated the core ethical norms-obligation, permission, and prohibition-
into hard and so/ ethical constraints [268]. Hard constraints encapsulate the normative demands of
obligations and prohibitions, including their conditional variants, and can be formally speci+ed using LTL
alongside complex task requirements. In contrast, so/ ethical constraints incorporate both strong and weak
permissions, modeled as ethical guidelines with varying degrees of reinforcement or deterrence through
a redesigned reward function within a POMDP framework, which accounts for partial observability in
the environment.

)is framework transforms the original problem into an optimization task seeking the optimal policy
over the product of the POMDP and an LTL-induced automaton. Here, the ful+llment of complex tasks and
adherence to hard ethical constraints are guaranteed through automaton-based model checking, while so/
ethical constraints are promoted by maximizing the accumulated reward. To tackle this problem, we adapt
and extend the RL methodology outlined in Section 3, with the updated model representation provided
in Fig. 7.
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Figure 7: )e product of LDGBA and POMDP for RL problems with complex tasks under ethical constraints

)is case study examines a medical clinic (see Fig. 8) comprising several specialized areas: four
treatment rooms (a–d), a medical storage room (S), a surgical equipment room (Equip), a central front desk
(FD), and a charging station (Chrg) for the robotic assistant. Rooms ‘a’ and ‘d’ include large windows, while
multiple doors ensure accessibility. )e clinic’s layout is modeled as a 4 × 4 grid world. )e robot perceives
its surroundings in four +xed directions (North, West, South, East), detecting environmental features such
as walls, hallways, doors, and windows. Since these observations are non-unique, that is, multiple states may
yield identical sensor readings, the robot operates under partial observability, framing the task as a POMDP.

Figure 8: )e clinic environment

)e robot’s motion is restricted to four primary navigation directions: up, le/, down, and right,
representing simpli+ed discrete actions for path planning. To account for real-world execution uncertainty,
we model the robot’s movement as stochastic: with a 0.9 probability of successfully moving in the intended
direction and a 0.1 probability of deviating uniformly to adjacent directions. Collisions with walls result in
the robot remaining stationary. Each movement incurs a penalty (cost = −0.1), while reaching a designated
acceptance state yields a reward (+1.0). )e clinic’s work.ow requires the robot to assist doctors in treatment
rooms ‘a’ and ‘c’ by frequently transporting medical supplies from the equipment room (Equip). )e robot’s
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operational cycle consists of: Retrieving supplies from the Equipment room, delivering them to ‘a’ or ‘c’,
returning to the charging station for replenishment. )is cycle repeats inde+nitely, with the critical constraint
that the robot must never enter the storage room. )e task speci+cations are formally encoded as an LTL
formula, denoted as φtask , in Eq. (19).

φtask = ◻♢(Equip ∧ ♢((a ∨ c) ∧ ♢Chrg)) ∧ ◻(¬S) (19)

where Equip, a, c, Chrg, and S denote atomic propositions indicating that the robot is at the surgical
equipment room, treatment room ‘a’, treatment room ‘c’, the charging station, and the medical storage
room, respectively.

As shown in Fig. 8, a waste bin (Waste) is positioned at the end of the hallway. Although primarily
designated for general trash, it is sometimes used by patients to discard medical waste (e.g., used wipes,
specimen containers), which introduces biohazard risks to the clinic. To uphold hygiene and safety standards,
an ethical protocol is implemented: when the bin’s sensor detects medical waste, the robot must immediately
transport it to a secure disposal zone near the front desk (FD). )e robot is equipped with a sealed, biohazard-
safe compartment to prevent contamination of the clinical environment or cross-contact with medical
supplies during transport. )e waste bin has a 10% probability of containing biohazardous waste at any given
time, as determined by historical clinic data. )is stochastic occurrence is modeled as a Bernoulli-distributed
event in the system’s state transitions.

In the +rst scenario, our architecture enforces ethical compliance through a hard constraint that the
robotic platform must execute without exception. Grounded in the clinic’s deontological operational policies,
the robot initiates immediate countermeasure protocols upon detecting biohazardous materials, prioritizing
waste transportation to the authorized decontamination zone (FD) above all other functions. )is hard
ethical constraint is mathematically formalized as an invariant property in LTL as

φnorm = ◻(Waste →◯FD) (20)

)e LTL formula components are formally de+ned as: (1) Proposition ‘Waste’ holds when biohazardous
material is present in the disposal receptacle, and (2) Proposition ‘FD’ becomes true when the robotic agent
reaches the front desk disposal station. )e complete LTL speci+cation for this case is expressed as where
‘Waste’ means the waste bin has the medical waste, and ‘FD’ indicates visiting the front desk to dispose of
the waste. )e complete LTL formula for this case is de+ned as Eq. (21), and the result can be found in [268].

φhard = φtask ∧ φnorm (21)

To illustrate how the LTL formulas guide behavior, consider the following scenario: A nurse requests
medical supplies in treatment room ‘c’. )e robot begins its routine by navigating from the equipment room
toward ‘c’, following its planned task cycle. On its way, the robot’s waste sensor detects that the hallway
bin contains biohazardous material. )e hard ethical constraint encoded in Eq. (20) immediately overrides
its delivery task: instead of continuing to room ‘c’, the robot diverts to the front desk ‘FD’ to dispose of
the hazardous waste. Only a/er ful+lling this obligation does it resume its original route, retrieving a
fresh set of supplies before completing the delivery. In this way, the LTL speci+cation acts as a “moral
compass,” ensuring that urgent ethical requirements always take precedence over e-ciency goals, while still
guaranteeing eventual task completion.

In another scenario with the utilitarian implementation, the clinical framework prioritizes both e-cient
patient care in treatment rooms and responsible waste management by treating ethical norms as permission
rather than obligation. )is so/-constraint approach is encoded in the POMDP model through an additional
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dynamic reward function that imposes a minor penalty (−0.01 per movement) when the robot detects
medical waste but postpones disposal, creating an opportunity cost that gently incentivizes timely waste
management without strictly prohibiting other actions. )e penalty resets to zero upon successful waste
disposal at the designated front desk location, allowing the robot to automatically restore standard opera-
tional priorities while maintaining compliance with ethical requirements. )is design e,ectively balances
urgent patient needs with environmental safety protocols through quanti+able, reversible trade-o,s in the
decision-making framework.

Under the so/ ethical constraint, the robot behaves di,erently. Suppose it is on the way to the charging
station a/er delivering supplies to room ‘a’ when it detects biohazardous waste in the bin. Instead of
immediately diverting to the front desk, the robot evaluates its priorities: because the waste penalty is small
compared to the risk of depleting its battery, the robot chooses to recharge +rst. Only a/erward does it return
to dispose of the waste, thereby balancing clinical e-ciency with environmental safety. )is demonstrates
how treating ethical requirements as permissions rather than obligations allows the system to adaptively
trade o, between competing goals, while still promoting desirable ethical outcomes.

Our RL framework operates under the assumption that the robotic agent has no explicit knowledge of
the prede+ned task speci+cation (Eq. (19)). To compensate for this task-agnostic condition, the Q-network
processes both raw sensor observations and perceived state label sequences as dual input streams, as detailed
in Section 3.4. )is architecture enables implicit task learning through the reward structure rather than
explicit task awareness. A/er achieving convergence (Fig. 9), the resulting optimal policy generates the
navigation trajectories shown in Fig. 10, which demonstrate three key characteristics under so/ ethical
constraints: (1) maintenance of primary mission objectives as the dominant path determinant, (2) conditional
incorporation of the so/ ethical constraint, waste disposal when detected, and (3) robust accommodation
of the action uncertainty through stable yet adaptable path variations that preserve overall mission integrity
while responding to environmental contingencies.

Figure 9: )e evolution of the accumulated rewards in the scenario with a so/ constraint
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(a) (b)

Figure 10: )e generated trajectory from the optimal policy demonstrates the robot’s behavior when operating under
the so/ ethical constraint without explicit task awareness. Key observations include (a) while en route to the charging
station (Chrg), the robot passes the waste bin containing medical waste, and (b) the robot accomplishes the task when
there is no medical waste

)e trajectories depicted in 10 demonstrate structurally similar navigation patterns to accomplish
the task under di,erent operational conditions, highlighting how the agent’s decision-making adapts to
environmental changes while maintaining consistent movement logic. In both scenarios (a) and (b), the
agent follows a comparable route from treatment room ‘d’ to equipment room ‘Equip’, then to treatment
room ‘c’, and +nally toward charging station ‘Chrg’, with the primary divergence occurring when medical
waste is detected (visualized by the gray rounded rectangle in (a)). When biohazardous waste is identi+ed
during the charging phase in (a), the same fundamental trajectory is temporarily maintained before the
robot picks and transports the bio-hazardous waste to the front desk ‘FD’, showcasing how the so/ constraint
implementation modi+es but doesn’t fundamentally alter the baseline navigation strategy. It should be
noted that the robot’s trajectory exhibits characteristic oscillatory movements at speci+c segments, a direct
consequence of action uncertainties.

5.3 Evolution of Human Trust in AI
)e multi-armed bandit problem is a one-state RL task where, in each trial, an agent selects an action,

receives a reward, and resets to the initial state—enabling iterative learning under consistent dynamics. In
this case study, we designed an experiment in which a human and an AI agent collaboratively solve such a
problem, investigating how human decision-making interacts with AI guidance. Speci+cally, we quantify the
evolution of human trust in the AI throughout the task over the course of 200 trials.

Here, we describe the roles of the AI agent and the human participant, as well as their interaction
protocol, in each trial.

• Initialization: Five slot machines (labeled 0–4) are generated, each with a random reward value (2–10)
and a success probability (0%–100%). If the selected machine pays out (determined probabilistically),
the participant receives the assigned reward; otherwise, they receive a fallback reward of 1.



44 Comput Mater Contin. 2025

• AI Recommendation: )e AI agent identi+es the optimal machine with the highest expected reward and
recommends this machine to the participant. With 20% probability, the AI agent provides an explanation
comparing the top two machines, for example, “Machine 3: expected reward 6.58 (70% chance of 9, 30%
chance of 1). Machine 1: 6.48 (78% chance of 8, 22% chance of 1). Recommendation: Machine 3.”

• Participant Decision: )e participant selects a machine to play, either following or ignoring the
AI’s recommendation.

• Outcome Observation: )e participant receives their reward. At the same time, the AI also observes
which machine was selected and the reward obtained.

• Trust Assessment: Every +/h trial, the participant completes a brief survey rating their likelihood (in
percentage) of following the AI recommendation.

We recruited several undergraduate students to participate in this experiment and collected preliminary
data that was analyzed individually. We hypothesize that human trust in AI is based on the human’s internal
values of following and not following AI recommendations. )e internal values are modeled using RL. Unlike
conventional one-state multi-armed bandit problems, we introduce two distinct states to track participants’
behavioral dynamics: S0 (representing independent decision-making, where participants either disregard the
AI’s recommendation or randomly select a non-recommended machine) and S1 (representing compliance
with the AI’s suggestion). By monitoring state transitions and updating state values (V(S0) and V(S1))
throughout the experiment, we can quantitatively model the evolution of human trust in AI based on the
collected behavioral data [269].

At the start of each experiment, state values V(S0) and V(S1) are initialized to zero. )e initial active
state is determined by the participant’s +rst survey response: S1 (AI-following) is assigned if the self-reported
likelihood of compliance is ≥50%, otherwise S0 (independent decision-making) is assigned. During each
trial, the current state A (S0 or S1) may either persist (B = A) or transition to the alternate state (B ≠ A),
contingent on whether the participant follows the AI’s recommendation. Following reward R observation,
V(A) is updated via Eq. (22), regardless of whether B equals A or not.

V(A) = V(A) + α(R + γ(V(B) − V(A))) (22)

where α (learning rate) and γ (discount factor) are hyperparameters governing the value update process.
Consequently, each experiment generates 200 samples, and an individual data sample contains the state

value di,erence X = V(S1) − V(S0) as input and a binary label (follow AI = 1 / not follow AI = 0) as output.
)is constitutes a binary classi+cation problem, for which we model trust probability via the sigmoid function
in Eq. (23).

PAI = 1
1 + eaX+b (23)

where parameters a and b are estimated through logistic regression applied to the experimental dataset.
)e dataset is partitioned into training and validation sets, with hyperparameters α and γ optimized

via grid search (α ∈ [0.05, 0.5], γ ∈ [0.75, 0.95]). Survey responses are held out as an independent test set
to evaluate the performance of the trust probability model (Fig. 11). If the model successfully captures the
interaction between human trust and AI, its predictions should align with the participants’ subjective survey
reports collected throughout the experiment. Consistent with the R2 values, visual inspection of the plots
shows clear variation in how well the logistic function captures individual trust dynamics.
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(a) Particiant 1 (b) Particiant 2

(c) Particiant 3 (d) Particiant 4

Figure 11: Approximated evolution of human trust in AI using a logistic function, derived from experimental data and
compared to survey responses

For Participants 1 and 2, the model predictions track the survey data reasonably well (R2 = 0.640 and
0.623, respectively). In both cases, the logistic curves capture the overall upward trend in trust probability
across trials, suggesting that the two-state RL framework provides a suitable abstraction for modeling human
trust when participants display moderate variability in compliance. Notably, according to the collected data,
we also observed that Participant 2 exhibited increased reliance on AI recommendations when explanations
were provided compared to when they were absent.

For Participant 3, the logistic model also appears to align visually with the survey data in Fig. 11.
However, the near-exclusive following of AI recommendations yields a strongly negative R2 (−2.43). )is
paradox re.ects the lack of behavioral variance: although the curve matches the reported trust levels, the
triviality of the participant’s responses undermines statistical +t and limits interpretability. In contrast,
Participant 4 presents a more challenging case. Both the negative R2 (−6.48) and the divergence seen
in Fig. 11 indicate that the logistic function fails to capture their highly .uctuating trust behavior. )e
participant’s survey data suggest dynamic, nonlinear shi/s in reliance on AI that cannot be adequately
represented by the binary state framework of compliance vs. independence. )is underscores the in.uence
of unmodeled factors, such as changing risk preferences, attention .uctuations, or evolving interpretations
of AI explanations.
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Taken together, the quantitative metrics and Fig. 11 highlight the heterogeneity of trust dynamics in
human-AI collaboration. While the proposed two-state RL model is e,ective for participants with stable
yet .exible trust trajectories, it struggles when behavior is either overly uniform (Participant 3) or highly
volatile (Participant 4). )ese limitations suggest that future extensions should incorporate richer state
representations, potentially capturing gradations of trust, contextual variability, or cognitive-a,ective signals,
to more faithfully represent human decision-making in collaborative settings.

6 Conclusions and Future Directions
6.1 Conclusions

)e integration of HAII into RL represents a transformative approach to developing intelligent systems
that are not only technically pro+cient but also aligned with human values, trust, and usability. )is review
has systematically explored the foundational pillars of HAII, including trust, usability, and understandability,
and HAII implementation through +ve key approaches: LHF, LHD, SA, HLQ, and XRL. Each of these
methods o,ers unique advantages and challenges, and their synergistic applications can signi+cantly enhance
the e,ectiveness and acceptance of RL systems in real-world scenarios. In real-world deployments, these
approaches rarely function in isolation. Instead, e,ective human-AI interaction emerges from their integra-
tion. For example, systems may combine demonstrations for initialization, feedback for re+nement, SA for
safety, querying for uncertainty resolution, and explanations for transparency. Together, these methods form
a holistic framework that enables RL systems to align with human needs, values, and trust requirements.

)e case studies presented in this review illustrate the practical applications of HAII principles across
diverse domains, from agriculture to robotics and human-AI trust dynamics. )ese examples highlight
the importance of balancing technical performance with human-centric considerations, such as ethical
constraints, trust calibration, and interpretability.

In the +rst case study, the trust-aware RL framework produced fertilization strategies that achieved
comparable yields to trust-agnostic policies while signi+cantly increasing farmer acceptance in user studies.
)is demonstrates that trust can be quanti+ed and optimized jointly with productivity, highlighting the
feasibility of incorporating human-centered objectives directly into the learning process. Beyond agricultural
fertilization, the methodology exempli+es a generalizable approach: embedding human trust as an explicit
optimization objective enables RL systems to move beyond narrow performance metrics and balance tech-
nical e-ciency with social acceptability. Future work will extend validation to diverse crops, soil conditions,
and regional contexts, ensuring robustness under varying ecological and socioeconomic conditions, while
also exploring the transfer of this framework to other high-stakes domains such as healthcare decision
support, energy management, and autonomous vehicle control. By adapting the trust-modeling component
to domain-speci+c user populations, the approach holds promise as a blueprint for designing AI systems that
achieve dual goals of technical performance and sustained human adoption.

In the second case study, the developed hierarchical POMDP framework enabled robots to .exibly adapt
to patient scheduling and work.ow needs while ensuring that hard safety and ethical constraints were never
violated. Simulation results demonstrated that this approach improved safety compliance without sacri+cing
e-ciency compared to baseline planners, showing that formal methods such as LTL can be e,ectively
embedded within decision-making frameworks to guarantee ethical alignment. Beyond the clinical context,
this methodology illustrates a generalizable strategy for integrating symbolic constraints with probabilistic
planning, allowing autonomous agents to operate in dynamic environments without compromising critical
human values. Future directions include pilot testing in real clinical settings, expanding and re+ning
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the library of ethical rules to capture diverse stakeholder perspectives, and exploring scalability to other
high-stakes domains such as eldercare, manufacturing, and public service robotics.

In the third case study, the bandit-based trust model successfully reproduced observed patterns of
how users increase or decrease reliance on AI advice over time, providing a quantitative predictor of
trust evolution. )is marks a signi+cant step beyond traditional survey-based approaches by o,ering
a computational mechanism for tracking trust dynamically and continuously. )e methodology further
demonstrates generalizability: by framing trust adaptation as a sequential decision-making process, it can be
applied across domains where human reliance on AI evolves through repeated interactions, such as medical
diagnostics, +nancial decision support, and autonomous driving. Future research will focus on integrating
this trust model into adaptive AI systems, enabling real-time trust calibration and proactive adjustment of
autonomy levels to prevent both under-reliance and over-reliance.

6.2 Future Directions
As AI systems grow more capable and autonomous, the principles of HAII will be critical for bridging

the gap between theoretical advancements and safe, e,ective real-world deployment. While recent progress
in RL has shown great promise, substantial research gaps remain. Future work, as detailed below, must move
beyond isolated technical solutions and instead develop integrated frameworks that explicitly address the
core pillars of HAII (trust, usability, and understandability) through the unique capabilities of RL.

• Advancing dynamic trust calibration. A critical gap exists in the development of RL agents that can
perceive, model, and actively calibrate user trust in real time. Current systems o/en assume trust as
static, but in practice, trust .uctuates depending on context, prior interactions, and perceived system
performance. Future research should integrate trust modeling into the RL framework itself. For instance,
by representing the human’s trust state as part of a POMDP belief state. )is would allow agents to
dynamically adjust their behavior, becoming more conservative or o,ering richer explanations when
trust is low, while exercising greater autonomy when trust is high. Such dynamic trust calibration
prevents both under-reliance and over-reliance, ensuring balanced human-AI partnerships.

• Enhancing usability through adaptive collaboration. Existing systems o/en rely on static interaction
paradigms that do not .exibly adapt to human needs. RL is uniquely suited to support adaptive
collaboration, where the level of autonomy, assistance, and communication is personalized based on user
expertise, cognitive load, and contextual demands. Future RL algorithms should be designed to switch
seamlessly between di,erent HAII modes. For example, transitioning from SA to proactive querying
or from high-level suggestions to direct control. )is adaptability would maximize team performance
while minimizing user burden, embodying the vision of AI as an intelligent, responsive teammate rather
than a rigid tool.

• Achieving causal understandability with XRL. XRL has made progress in o,ering post-hoc justi+ca-
tions, but a signi+cant gap remains in generating explanations that are not only interpretable but also
causal and actionable. Future work should integrate causal inference with RL, enabling agents to answer
“what-if ” questions, explain the necessity of actions in the context of long-term goals, and provide
counterfactual insights. Moreover, bidirectional explainability should be pursued: human feedback on
explanations should directly inform and re+ne the agent’s policy, creating a closed-loop system where
both human and AI learn together.

• Integrating emerging technologies for HAII. Another frontier lies in the integration of RL with
emerging technologies such as LLMs. LLMs can serve as explanation mediators, translating complex
RL strategies into natural language narratives, or as feedback channels, capturing nuanced human input
beyond numeric rewards. However, relying on LLM-generated synthetic feedback introduces ethical and
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methodological concerns: it may embed preexisting model biases, misrepresent user intent, or obscure
accountability if used as a substitute for authentic human oversight. Future research should therefore
focus on uni+ed RL–LLM architectures that not only enhance adaptivity and communication but
also establish safeguards for transparency, bias mitigation, and human-in-the-loop validation, ensuring
alignment with HAII principles.

By prioritizing these human-centered challenges and leveraging RL’s capacity for learning and adap-
tation, we can unlock the full potential of this synergy. )e next generation of intelligent systems will
not merely optimize performance but will be trustworthy through continuous calibration, usable through
adaptive collaboration, and understandable through causal transparency. In doing so, they can become not
just powerful technologies but reliable and ethical partners that are deeply aligned with human values and
genuinely bene+cial to society.

In conclusion, the intersection of HAII and RL holds immense promise for advancing autonomous
systems that collaborate seamlessly with humans, adapt to complex environments, and operate responsibly.
)is review serves as a roadmap for researchers and practitioners, o,ering insights and frameworks to guide
the development of next-generation AI systems that are both intelligent and human-aligned.
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64. Sickert S, Esparza J, Jaax S, Křetínský J. Limit-deterministic Büchi automata for linear temporal logic. In:
Chaudhuri S, Farzan A, editors. Computer aided veri+cation. CAV 2016. Cham, Switzerland: Springer; 2016.
p. 312–32. doi:10.1007/978-3-319-41540-6_17.
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